Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Machine Learning with TensorFlow.js

You're reading from   Hands-On Machine Learning with TensorFlow.js A guide to building ML applications integrated with web technology using the TensorFlow.js library

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838821739
Length 296 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kai Sasaki Kai Sasaki
Author Profile Icon Kai Sasaki
Kai Sasaki
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: The Rationale of Machine Learning and the Usage of TensorFlow.js FREE CHAPTER
2. Machine Learning for the Web 3. Importing Pretrained Models into TensorFlow.js 4. TensorFlow.js Ecosystem 5. Section 2: Real-World Applications of TensorFlow.js
6. Polynomial Regression 7. Classification with Logistic Regression 8. Unsupervised Learning 9. Sequential Data Analysis 10. Dimensionality Reduction 11. Solving the Markov Decision Process 12. Section 3: Productionizing Machine Learning Applications with TensorFlow.js
13. Deploying Machine Learning Applications 14. Tuning Applications to Achieve High Performance 15. Future Work Around TensorFlow.js 16. Other Books You May Enjoy

Future Work Around TensorFlow.js

Our discussion so far has been based on the functionalities and features available today. But while we were writing this book, TensorFlow 2.0 was released. Of course, many of the ideas from TensorFlow 2.0 have been implemented in TensorFlow.js too. In this last chapter of the book, we are going to introduce several on-going projects and future plans to make TensorFlow.js more accessible and useful to machine learning developers on the web platform.

The following topics will be covered in this chapter:

  • Experimental backend implementations
    • WebGPU
    • WebAssembly
    • Mobile native applications with React Native
    • Native applications with Electron
  • AutoML edge helper
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime