Welcome to regression analysis! This chapter covers a different type of supervised learning, where the variable of interest is not categorical but quantitative. We will focus on different modes of linear regression. We will start by learning what linear models do and how they are estimated, using one of the oldest and simplest procedures—ordinary least squares (OLS). Next, we will evaluate how well a model fits data using statsmodels. Then, we will move on to the Bayesian linear regression model and ridge regression; this is a means of regularized linear regression. This is followed by least absolute shrinkage and selection operator (LASSO) regression, which is another regularized regression approach. Finally, we will discuss spline interpolation. While this is technically not considered to be a type of regression, it's still a...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine