Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Hands-On Graph Neural Networks Using Python
Hands-On Graph Neural Networks Using Python

Hands-On Graph Neural Networks Using Python: Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch

eBook
$9.99 $39.99
Paperback
$49.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Colour book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Graph Neural Networks Using Python

Getting Started with Graph Learning

Welcome to the first chapter of our journey into the world of graph neural networks (GNNs). In this chapter, we will delve into the foundations of GNNs and understand why they are crucial tools in modern data analysis and machine learning. To that end, we will answer three essential questions that will provide us with a comprehensive understanding of GNNs.

First, we will explore the significance of graphs as a representation of data, and why they are widely used in various domains such as computer science, biology, and finance. Next, we will delve into the importance of graph learning, where we will understand the different applications of graph learning and the different families of graph learning techniques. Finally, we will focus on the GNN family, highlighting its unique features, performance, and how it stands out compared to other methods.

By the end of this chapter, you will have a clear understanding of why GNNs are important and how they can be used to solve real-world problems. You will also be equipped with the knowledge and skills you need to dive deeper into more advanced topics. So, let’s get started!

In this chapter, we will cover the following main topics:

  • Why graphs?
  • Why graph learning?
  • Why graph neural networks?

Why graphs?

The first question we need to address is: why are we interested in graphs in the first place? Graph theory, the mathematical study of graphs, has emerged as a fundamental tool for understanding complex systems and relationships. A graph is a visual representation of a collection of nodes (also called vertices) and edges that connect these nodes, providing a structure to represent entities and their relationships (see Figure 1.1).

Figure 1.1 – Example of a graph with six nodes and five edges

Figure 1.1 – Example of a graph with six nodes and five edges

By representing a complex system as a network of entities with interactions, we can analyze their relationships, allowing us to gain a deeper understanding of their underlying structures and patterns. The versatility of graphs makes them a popular choice in various domains, including the following:

  • Computer science, where graphs can be used to model the structure of computer programs, making it easier to understand how different components of a system interact with each other
  • Physics, where graphs can be used to model physical systems and their interactions, such as the relationship between particles and their properties
  • Biology, where graphs can be used to model biological systems, such as metabolic pathways, as a network of interconnected entities
  • Social sciences, where graphs can be used to study and understand complex social networks, including the relationships between individuals in a community
  • Finance, where graphs can be used to analyze stock market trends and relationships between different financial instruments
  • Engineering, where graphs can be used to model and analyze complex systems, such as transportation networks and electrical power grids

These domains naturally exhibit a relational structure. For instance, graphs are a natural representation of social networks: nodes are users, and edges represent friendships. But graphs are so versatile they can also be applied to domains where the relational structure is less natural, unlocking new insights and understanding.

For example, images can be represented as a graph, as in Figure 1.2. Each pixel is a node, and edges represent relationships between neighboring pixels. This allows for the application of graph-based algorithms to image processing and computer vision tasks.

Figure 1.2 – Left: original image; right: graph representation of this image

Figure 1.2 – Left: original image; right: graph representation of this image

Similarly, a sentence can be transformed into a graph, where nodes are words and edges represent relationships between adjacent words. This approach is useful in natural language processing and information retrieval tasks, where the context and meaning of words are critical factors.

Unlike text and images, graphs do not have a fixed structure. However, this flexibility also makes graphs more challenging to handle. The absence of a fixed structure means they can have an arbitrary number of nodes and edges, with no specific ordering. In addition, graphs can represent dynamic data, where the connections between entities can change over time. For example, the relationships between users and products can change as they interact with each other. In this scenario, nodes and edges are updated to reflect changes in the real world, such as new users, new products, and new relationships.

In the next section, we will delve deeper into how to use graphs with machine learning to create valuable applications.

Why graph learning?

Graph learning is the application of machine learning techniques to graph data. This study area encompasses a range of tasks aimed at understanding and manipulating graph-structured data. There are many graphs learning tasks, including the following:

  • Node classification is a task that involves predicting the category (class) of a node in a graph. For example, it can categorize online users or items based on their characteristics. In this task, the model is trained on a set of labeled nodes and their attributes, and it uses this information to predict the class of unlabeled nodes.
  • Link prediction is a task that involves predicting missing links between pairs of nodes in a graph. This is useful in knowledge graph completion, where the goal is to complete a graph of entities and their relationships. For example, it can be used to predict the relationships between people based on their social network connections (friend recommendation).
  • Graph classification is a task that involves categorizing different graphs into predefined categories. One example of this is in molecular biology, where molecular structures can be represented as graphs, and the goal is to predict their properties for drug design. In this task, the model is trained on a set of labeled graphs and their attributes, and it uses this information to categorize unseen graphs.
  • Graph generation is a task that involves generating new graphs based on a set of desired properties. One of the main applications is generating novel molecular structures for drug discovery. This is achieved by training a model on a set of existing molecular structures and then using it to generate new, unseen structures. The generated structures can be evaluated for their potential as drug candidates and further studied.

Graph learning has many other practical applications that can have a significant impact. One of the most well-known applications is recommender systems, where graph learning algorithms recommend relevant items to users based on their previous interactions and relationships with other items. Another important application is traffic forecasting, where graph learning can improve travel time predictions by considering the complex relationships between different routes and modes of transportation.

The versatility and potential of graph learning make it an exciting field of research and development. The study of graphs has advanced rapidly in recent years, driven by the availability of large datasets, powerful computing resources, and advancements in machine learning and artificial intelligence. As a result, we can list four prominent families of graph learning techniques [1]:

  • Graph signal processing, which applies traditional signal processing methods to graphs, such as the graph Fourier transform and spectral analysis. These techniques reveal the intrinsic properties of the graph, such as its connectivity and structure.
  • Matrix factorization, which seeks to find low-dimensional representations of large matrices. The goal of matrix factorization is to identify latent factors or patterns that explain the observed relationships in the original matrix. This approach can provide a compact and interpretable representation of the data.
  • Random walk, which refers to a mathematical concept used to model the movement of entities in a graph. By simulating random walks over a graph, information about the relationships between nodes can be gathered. This is why they are often used to generate training data for machine learning models.
  • Deep learning, which is a subfield of machine learning that focuses on neural networks with multiple layers. Deep learning methods can effectively encode and represent graph data as vectors. These vectors can then be used in various tasks with remarkable performance.

It is important to note that these techniques are not mutually exclusive and often overlap in their applications. In practice, they are often combined to form hybrid models that leverage the strengths of each. For example, matrix factorization and deep learning techniques might be used in combination to learn low-dimensional representations of graph-structured data.

As we delve into the world of graph learning, it is crucial to understand the fundamental building block of any machine learning technique: the dataset. Traditional tabular datasets, such as spreadsheets, represent data as rows and columns with each row representing a single data point. However, in many real-world scenarios, the relationships between data points are just as meaningful as the data points themselves. This is where graph datasets come in. Graph datasets represent data points as nodes in a graph and the relationships between those data points as edges.

Let’s take the tabular dataset shown in Figure 1.3 as an example.

Figure 1.3 – Family tree as a tabular dataset versus a graph dataset

Figure 1.3 – Family tree as a tabular dataset versus a graph dataset

This dataset represents information about five members of a family. Each member has three features (or attributes): name, age, and gender. However, the tabular version of this dataset doesn’t show the connections between these people. On the contrary, the graph version represents them with edges, which allows us to understand the relationships in this family. In many contexts, the connections between nodes are crucial in understanding the data, which is why representing data in graph form is becoming increasingly popular.

Now that we have a basic understanding of graph machine learning and the different types of tasks it involves, we can move on to exploring one of the most important approaches for solving these tasks: graph neural networks.

Why graph neural networks?

In this book, we will focus on the deep learning family of graph learning techniques, often referred to as graph neural networks. GNNs are a new category of deep learning architecture and are specifically designed for graph-structured data. Unlike traditional deep learning algorithms, which have been primarily developed for text and images, GNNs are explicitly made to process and analyze graph datasets (see Figure 1.4).

Figure 1.4 – High-level architecture of a GNN pipeline, with a graph as input and an output that corresponds to a given task

Figure 1.4 – High-level architecture of a GNN pipeline, with a graph as input and an output that corresponds to a given task

GNNs have emerged as a powerful tool for graph learning and have shown excellent results in various tasks and industries. One of the most striking examples is how a GNN model identified a new antibiotic [2]. The model was trained on 2,500 molecules and was tested on a library of 6,000 compounds. It predicted that a molecule called halicin should be able to kill many antibiotic-resistant bacteria while having low toxicity to human cells. Based on this prediction, the researchers used halicin to treat mice infected with antibiotic-resistant bacteria. They demonstrated its effectiveness and believe the model could be used to design new drugs.

How do GNNs work? Let’s take the example of a node classification task in a social network, like the previous family tree (Figure 1.3). In a node classification task, GNNs take advantage of information from different sources to create a vector representation of each node in the graph. This representation encompasses not only the original node features (such as name, age, and gender) but also information from edge features (such as the strength of relationships between nodes) and global features (such as network-wide statistics).

This is why GNNs are more efficient than traditional machine learning techniques on graphs. Instead of being limited to the original attributes, GNNs enrich the original node features with attributes from neighboring nodes, edges, and global features, making the representation much more comprehensive and meaningful. The new node representations are then used to perform a specific task, such as node classification, regression, or link prediction.

Specifically, GNNs define a graph convolution operation that aggregates information from the neighboring nodes and edges to update the node representation. This operation is performed iteratively, allowing the model to learn more complex relationships between nodes as the number of iterations increases. For example, Figure 1.5 shows how a GNN would calculate the representation of node 5 using neighboring nodes.

Figure 1.5 – Left: input graph; right: computation graph representing how a GNN computes the representation of node 5 based on its neighbors

Figure 1.5 – Left: input graph; right: computation graph representing how a GNN computes the representation of node 5 based on its neighbors

It is worth noting that Figure 1.5 provides a simplified illustration of a computation graph. In reality, there are various kinds of GNNs and GNN layers, each of which has a unique structure and way of aggregating information from neighboring nodes. These different variants of GNNs also have their own advantages and limitations and are well-suited for specific types of graph data and tasks. When selecting the appropriate GNN architecture for a particular problem, it is crucial to understand the characteristics of the graph data and the desired outcome.

More generally, GNNs, like other deep learning techniques, are most effective when applied to specific problems. These problems are characterized by high complexity, meaning that learning good representations is critical to solving the task at hand. For example, a highly complex task could be recommending the right products among billions of options to millions of customers. On the other hand, some problems, such as finding the youngest member of our family tree, can be solved without any machine learning technique.

Furthermore, GNNs require a substantial amount of data to perform effectively. Traditional machine learning techniques might be a better fit in cases where the dataset is small, as they are less reliant on large amounts of data. However, these techniques do not scale as well as GNNs. GNNs can process bigger datasets thanks to parallel and distributed training. They can also exploit the additional information more efficiently, which produces better results.

Summary

In this chapter, we answered three main questions: why graphs, why graph learning, and why graph neural networks? First, we explored the versatility of graphs in representing various data types, such as social networks and transportation networks, but also text and images. We discussed the different applications of graph learning, including node classification and graph classification, and highlighted the four main families of graph learning techniques. Finally, we emphasized the significance of GNNs and their superiority over other techniques, especially regarding large, complex datasets. By answering these three main questions, we aimed to provide a comprehensive overview of the importance of GNNs and why they are becoming vital tools in machine learning.

In Chapter 2, Graph Theory for Graph Neural Networks, we will dive deeper into the basics of graph theory, which provides the foundation for understanding GNNs. This chapter will cover the fundamental concepts of graph theory, including concepts such as adjacency matrices and degrees. Additionally, we will delve into the different types of graphs and their applications, such as directed and undirected graphs, and weighted and unweighted graphs.

Further reading

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Implement -of-the-art graph neural architectures in Python
  • Create your own graph datasets from tabular data
  • Build powerful traffic forecasting, recommender systems, and anomaly detection applications

Description

Graph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery. Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, you’ll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps. By the end of this book, you’ll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more.

Who is this book for?

This book is for machine learning practitioners and data scientists interested in learning about graph neural networks and their applications, as well as students looking for a comprehensive reference on this rapidly growing field. Whether you’re new to graph neural networks or looking to take your knowledge to the next level, this book has something for you. Basic knowledge of machine learning and Python programming will help you get the most out of this book.

What you will learn

  • Understand the fundamental concepts of graph neural networks
  • Implement graph neural networks using Python and PyTorch Geometric
  • Classify nodes, graphs, and edges using millions of samples
  • Predict and generate realistic graph topologies
  • Combine heterogeneous sources to improve performance
  • Forecast future events using topological information
  • Apply graph neural networks to solve real-world problems
Estimated delivery fee Deliver to United States

Economy delivery 10 - 13 business days

Free $6.95

Premium delivery 6 - 9 business days

$21.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 14, 2023
Length: 354 pages
Edition : 1st
Language : English
ISBN-13 : 9781804617526
Category :
Languages :
Concepts :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Colour book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to United States

Economy delivery 10 - 13 business days

Free $6.95

Premium delivery 6 - 9 business days

$21.95
(Includes tracking information)

Product Details

Publication date : Apr 14, 2023
Length: 354 pages
Edition : 1st
Language : English
ISBN-13 : 9781804617526
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 139.97
Hands-On Graph Neural Networks Using Python
$49.99
Interpretable Machine Learning with Python
$49.99
Causal Inference and Discovery in Python
$39.99
Total $ 139.97 Stars icon
Banner background image

Table of Contents

24 Chapters
Part 1: Introduction to Graph Learning Chevron down icon Chevron up icon
Chapter 1: Getting Started with Graph Learning Chevron down icon Chevron up icon
Chapter 2: Graph Theory for Graph Neural Networks Chevron down icon Chevron up icon
Chapter 3: Creating Node Representations with DeepWalk Chevron down icon Chevron up icon
Part 2: Fundamentals Chevron down icon Chevron up icon
Chapter 4: Improving Embeddings with Biased Random Walks in Node2Vec Chevron down icon Chevron up icon
Chapter 5: Including Node Features with Vanilla Neural Networks Chevron down icon Chevron up icon
Chapter 6: Introducing Graph Convolutional Networks Chevron down icon Chevron up icon
Chapter 7: Graph Attention Networks Chevron down icon Chevron up icon
Part 3: Advanced Techniques Chevron down icon Chevron up icon
Chapter 8: Scaling Up Graph Neural Networks with GraphSAGE Chevron down icon Chevron up icon
Chapter 9: Defining Expressiveness for Graph Classification Chevron down icon Chevron up icon
Chapter 10: Predicting Links with Graph Neural Networks Chevron down icon Chevron up icon
Chapter 11: Generating Graphs Using Graph Neural Networks Chevron down icon Chevron up icon
Chapter 12: Learning from Heterogeneous Graphs Chevron down icon Chevron up icon
Chapter 13: Temporal Graph Neural Networks Chevron down icon Chevron up icon
Chapter 14: Explaining Graph Neural Networks Chevron down icon Chevron up icon
Part 4: Applications Chevron down icon Chevron up icon
Chapter 15: Forecasting Traffic Using A3T-GCN Chevron down icon Chevron up icon
Chapter 16: Detecting Anomalies Using Heterogeneous GNNs Chevron down icon Chevron up icon
Chapter 17: Building a Recommender System Using LightGCN Chevron down icon Chevron up icon
Chapter 18: Unlocking the Potential of Graph Neural Networks for Real-World Applications Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
(22 Ratings)
5 star 54.5%
4 star 22.7%
3 star 4.5%
2 star 9.1%
1 star 9.1%
Filter icon Filter
Top Reviews

Filter reviews by




SEAN W. GRANT Jun 19, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Trying to understand what graph neural networks (GNN's) are, let alone how to use them can be difficult and intimidating. In recent times, GNN's have become a hot topic and this book does a great job of introducing them and showing use cases of how they can be helpful to provide deeper insights. It is geared towards folks with a technical background and are comfortable with python (hence the "Hands On" part). I found the illustrations to be very helpful in explaining the technical concepts more and the links to further reading were good to reference if I wanted to go deeper on some topics. One part I really enjoyed was the spatio-temporal GNN on dynamic graphs. This has a lot of real-world applications, and the author did a fantastic job of explaining the problem, describing the GNN and its limitations then walking through the code to get a prediction.Overall this is a must have book to have on the shelf if you want to start to dive into the world of deep learning on graphs!
Amazon Verified review Amazon
H2N Oct 05, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book stands as a guiding light for those exploring the realm of GNN. Effortlessly merging basic graph theory with advanced methods, it provides a hands-on exploration of its applications, enriched by real-world instances. The inclusion of interactive Jupyter Notebooks on GitHub enhances the reader's journey, facilitating hands-on experiments on platforms such as Google Colab. Harmonizing theoretical insights with practical demonstrations, it's a must-have for anyone, whether new or experienced in GNN. A top recommendation!
Amazon Verified review Amazon
Steven Fernandes Jul 04, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book comprehensively introduces graph neural networks, effectively demystifying complex concepts. Its practical approach to implementation using Python and PyTorch Geometric is commendable. Readers will master classifying nodes, graphs, and edges with millions of samples, and predicting realistic graph topologies. Particularly noteworthy is the book's focus on performance improvement via heterogeneous sources and applying topological information for future event forecasting. The real-world problem-solving focus of the book adds a pragmatic edge, making it an invaluable resource for both novice and experienced practitioners in the field. It's a must-read for anyone interested in graph neural networks.
Amazon Verified review Amazon
Manu Jun 16, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is one of the best books to pick up Graph Neural Networks today. The book takes the reader from basics of Graphs to modern techniques like Graph Attention Networks. the the special focus on applications shows the reader how GNNs can be used in a wide variety of highly relevant use cases like forecasting, recommendation systems, etc.The book is well-written and is a pleasure to read. Would definitely recommend this book to others.
Amazon Verified review Amazon
Amazon Customer Aug 15, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
All and all a very nice book about GNNs. This is a practice-oriented book with well-chosen examples. It's an ideal complement to practice and get the code right. There are a few typos here and there, but they're minor and the code works!
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela