Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Hands-On Deep Learning with TensorFlow
Hands-On Deep Learning with TensorFlow

Hands-On Deep Learning with TensorFlow: Uncover what is underneath your data!

eBook
$9.99 $29.99
Paperback
$38.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Deep Learning with TensorFlow

Chapter 1. Getting Started

TensorFlow is a new machine learning and graph computation library recently released by Google. Its Python interface ensures the elegant design of common models, while its compiled backend ensures speed.

Let's take a glimpse at the techniques you'll learn and the models you'll build as you apply TensorFlow.

Installing TensorFlow

In this section, you will learn what TensorFlow is, how to install it, and how to build simple models and do simple computations. Further, you will learn how to build a logistic regression model for classification, and introduce a machine learning problem to help us learn TensorFlow.

We're going to learn what kind of library TensorFlow is and install it on our own Linux machine, or a free instance of CoCalc if you don't have access to a Linux machine.

TensorFlow – main page

First, what is TensorFlow? TensorFlow is a new machine learning library put out by Google. It is designed to be very easy to use and is very fast. If you go to the TensorFlow website, tensorflow.org, you will have access to a wealth of information about what TensorFlow is and how to use it. We'll be referring to this often, particularly the documentation.

TensorFlow – the installation page

Before we get started with TensorFlow, note that you need to install it, as it probably doesn't come preinstalled on your operating system. So, if you go to the Install tab on the TensorFlow web page, click on Installing TensorFlow on Ubuntu, and then click on "native" pip, you will learn how to install TensorFlow.

TensorFlow – the installation page

Installing TensorFlow is very challenging, even for experienced system administrators. So, I highly recommend using something like the pip installation; alternatively, if you're familiar with Docker, use the Docker installation. You can install TensorFlow from the source, but this can be very difficult. We will install TensorFlow using a precompiled binary called a wheel file . You can install this file using Python's pip module installer.

Installing via pip

For the pip installation, you have the option of using either a Python 2 or Python 3 version. Also, you can choose between the CPU and GPU version. If your computer has a powerful graphics card, the GPU version may be for you.

Installing via pip

However, you need to check that your graphics card is compatible with TensorFlow. If it's not, it's fine; everything in this series can be done with just the CPU version.

Note

We can install TensorFlow by using the pip install tensorflow command (based on your CPU or GPU support and pip version), as shown in the preceding screenshot.

So, if you copy the following line for TensorFlow, you can install it as well:

# Python 3.4 installation
sudo pip3 install --upgrade \
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.1-cp34-cp34m-linux_x86_64.whl

If you don't have Python 3.4, as the wheel file called for, that's okay. You can probably still use the same wheel file. Let's take a look at how to do this for Python 3.5. First, you just need to download the wheel file directly, by either putting the following URL in your browser or using a command-line program, such as wget, as we're doing here:

wget  https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.1-cp34-cp34m-linux_x86_64.whl

If you download this, it will very quickly be grabbed by your computer.

Now all you need to do is change the name of the file from cp34, which stands for Python 3.4, to whichever version of Python 3 you're using. In this case, we'll change it to a version using Python 3.5, so we'll change 4 to 5:

mv tensorflow-1.2.1-cp34-cp34m-linux_x86_64.whl tensorflow-1.2.1-cp35-cp35m-linux_x86_64.whl

Now you can install TensorFlow for Python 3.5 by simply changing the installation line here to pip3 install and the name of the new wheel file after changing it to 3.5:

sudo pip3 install ./tensorflow-1.2.1-cp35-cp35m-linux_x86_64.whl

We can see this works just fine. Now you've installed TensorFlow.

Installing via pip

If your installation somehow becomes corrupted later, you can always jump back to this segment to remind yourself about the steps involved in the installation.

Installing via CoCalc

If you don't have administrative or installation rights on your computer but still want to try TensorFlow, you can try running TensorFlow over the web in a CoCalc instance. If you go to https://cocalc.com/ and create a new account, you can create a new project. This will give you a sort of a virtual machine that you can play around with. Conveniently, TensorFlow is already installed in the Anaconda 3 kernel.

Installing via CoCalc

Let's create a new project called TensorFlow. Click on +Create new project…, enter a title for your project, and click on Create Project. Now we can go into our project by clicking on the title. It will take a couple of seconds to load.

Installing via CoCalc

Click on +New to create a new file. Here, we'll create a Jupyter notebook:

Installing via CoCalc

Jupyter is a convenient way to interact with IPython and the primary means of using CoCalc for these computations. It may take a few seconds to load.

When you get to the interface shown in the following screenshot, the first thing you need to do is change the kernel to Anaconda Python 3 by going to Kernel | Change kernel… | Python 3 (Anaconda):

Installing via CoCalc

This will give you the proper dependencies to use TensorFlow. It may take a few seconds for the kernel to change. Once you are connected to the new kernel, you can type import tensorflow in the cell and go to Cell | Run Cells to check whether it works:

Installing via CoCalc

If your Jupyter notebook takes a long time to load, you can instead create a Terminal in CoCalc using the button shown in the following screenshot:

Installing via CoCalc

Once there, type anaconda3 to switch environments, then type ipython3 to launch an interactive Python session, as shown in the following screenshot:

Installing via CoCalc

You can easily work here, although you won't be able to visualize the output. Type import tensorflow in the Terminal and off you go.

So far in this section, you've learned what TensorFlow is and how to install it, either locally or on a virtual machine on the web. Now we're ready to explore simple computations in TensorFlow.

Simple computations

First, we're going to take a look at the tensor object type. Then we'll have a graphical understanding of TensorFlow to define computations. Finally, we'll run the graphs with sessions, showing how to substitute intermediate values.

Defining scalars and tensors

The first thing you need to do is download the source code pack for this book and open the simple.py file. You can either use this file to copy and paste lines into TensorFlow or CoCalc, or type them directly yourselves. First, let's import tensorflow as tf. This is a convenient way to refer to it in Python. You'll want to hold your constant numbers in tf.constant calls. For example, let's do a = tf.constant(1) and b = tf.constant(2):

import tensorflow as tf
# You can create constants in TF to hold specific values
a = tf.constant(1)
b = tf.constant(2)

Of course, you can add and multiply these to get other values, namely c and d:

# Of course you can add, multiply, and compute on these as you like
c = a + b
d = a * b

TensorFlow numbers are stored in tensors, a fancy term for multidimensional arrays. If you pass a Python list to TensorFlow, it does the right thing and converts it into an appropriately dimensioned tensor. You can see this illustrated in the following code:

# TF numbers are stored in "tensors", a fancy term for multidimensional arrays. If you pass TF a Python list, it can convert it
V1 = tf.constant([1., 2.])   # Vector, 1-dimensional
V2 = tf.constant([3., 4.])   # Vector, 1-dimensional
M = tf.constant([[1., 2.]])             # Matrix, 2d
N = tf.constant([[1., 2.],[3.,4.]])     # Matrix, 2d
K = tf.constant([[[1., 2.],[3.,4.]]])   # Tensor, 3d+

The V1 vector, a one-dimensional tensor, is passed as a Python list of [1. , 2.]. The dots here just force Python to store the number as decimal values rather than integers. The V2 vector is another Python list of [3. , 4. ]. The M variable is a two-dimensional matrix made from a list of lists in Python, creating a two-dimensional tensor in TensorFlow. The N variable is also a two-dimensional matrix. Note that this one actually has multiple rows in it. Finally, K is a true tensor, containing three dimensions. Note that the final dimension contains just one entry, a single two-by-two box.

Don't worry if this terminology is a bit confusing. Whenever you see a strange new variable, you can jump back to this point to understand what it might be.

Computations on tensors

You can also do simple things, such as add tensors together:

V3 = V1 + V2

Alternatively, you can multiply them element-wise, so each common position is multiplied together:

# Operations are element-wise by default
M2 = M * M

For true matrix multiplication, however, you need to use tf.matmul, passing in your two tensors as arguments:

NN = tf.matmul(N,N)

Doing computation

Everything so far has just specified the TensorFlow graph; we haven't yet computed anything. To do this, we need to start a session in which the computations will take place. The following code creates a new session:

sess = tf.Session()

Once you have a session open, doing: sess.run(NN) will evaluate the given expression and return an array. We can easily send this to a variable by doing the following:

output = sess.run(NN)
print("NN is:")
print(output)

If you run this cell now, you should see the correct tensor array for the NN output on the screen:

Doing computation

When you're done using your session, it's good to close it, just like you would close a file handle:

# Remember to close your session when you're done using it
sess.close()

For interactive work, we can use tf.InteractiveSession() like so:

sess = tf.InteractiveSession()

You can then easily compute the value of any node. For example, entering the following code and running the cell will output the value of M2:

# Now we can compute any node
print("M2 is:")
print(M2.eval())

Variable tensors

Of course, not all our numbers are constant. To update weights in a neural network, for example, we need to use tf.Variable to create the appropriate object:

W = tf.Variable(0, name="weight")

Note that variables in TensorFlow are not initialized automatically. To do so, we need to use a special call, namely tf.global_variables_initializer(), and then run that call with sess.run():

init_op = tf.global_variables_initializer()
sess.run(init_op)

This is to put a value in that variable. In this case, it will stuff a 0 value into the W variable. Let's just verify that W has that value:

print("W is:")
print(W.eval())

You should see an output value for W of 0 in your cell:

Variable tensors

Let's see what happens when you add a to it:

W += a
print("W after adding a:")
print(W.eval())

Recall that a is 1, so you get the expected value of 1 here:

Variable tensors

Let's add a again, just to make sure we can increment and that it's truly a variable:

W += a
print("W after adding a:")
print(W.eval())

Now you should see that W is holding 2, as we have incremented it twice with a:

Variable tensors

Viewing and substituting intermediate values

You can return or supply arbitrary nodes when doing a TensorFlow computation. Let's define a new node but also return another node at the same time in a fetch call. First, let's define our new node E, as shown here:

E = d + b # 1*2 + 2 = 4

Let's take a look at what E starts as:

print("E as defined:")
print(E.eval())

You should see that, as expected, E equals 4. Now let's see how we can pass in multiple nodes, E and d, to return multiple values from a sess.run call:

# Let's see what d was at the same time
print("E and d:")
print(sess.run([E,d]))

You should see multiple values, namely 4 and 2, returned in your output:

Viewing and substituting intermediate values

Now suppose we want to use a different intermediate value, say for debugging purposes. We can use feed_dict to supply a custom value to a node anywhere in our computation when returning a value. Let's do that now with d equals 4 instead of 2:

# Use a custom d by specifying a dictionary
print("E with custom d=4:")
print(sess.run(E, feed_dict = {d:4.}))

Remember that E equals d + b and the values of d and b are both 2. Although we've inserted a new value of 4 for d, you should see that the value of E will now be output as 6:

Viewing and substituting intermediate values

You have now learned how to do core computations with TensorFlow tensors. It's time to take the next step forward by building a logistic regression model.

Logistic regression model building

Okay, let's get started with building a real machine learning model. First, we'll see the proposed machine learning problem: font classification. Then, we'll review a simple algorithm for classification, called logistic regression. Finally, we'll implement logistic regression in TensorFlow.

Introducing the font classification dataset

Before we jump in, let's load all the necessary modules:

import tensorflow as tf
import numpy as np

If you're copying and pasting to IPython, make sure your autoindent property is set to OFF:

%autoindent

The tqdm module is optional; it just shows nice progress bars:

try:
    from tqdm import tqdm
except ImportError:
    def tqdm(x, *args, **kwargs):
        return x

Next, we'll set a seed of 0, just to get consistent data splitting from run to run:

# Set random seed
np.random.seed(0)

In this book, we've provided a dataset of the images of characters using five fonts. For convenience, these are stored in a compressed NumPy file (data_with_labels.npz), which can be found in the download package of this book. You can easily load these into Python with numpy.load:

# Load data
data = np.load('data_with_labels.npz')
train = data['arr_0']/255.
labels = data['arr_1']

The train variable here holds the actual pixel values scaled from 0 to 1, and labels holds the type of font that it was; therefore, it'll be either 0, 1, 2, 3, or 4, as there are five fonts in total. You can print out these values, so you can look at them using the following code:

# Look at some data
print(train[0])
print(labels[0])

However, that's not very instructive, as most of the values are zeroes and only the central part of the screen contains the image data:

Introducing the font classification dataset

If you have Matplotlib installed, now is a good place to import it. We'll use plt.ion() to automatically bring up figures when needed:

# If you have matplotlib installed
import matplotlib.pyplot as plt
plt.ion()

Here are some example images of characters from each font:

Introducing the font classification dataset

Yeah, they're pretty flashy. In the dataset, each image is represented as a 36 x 36 two-dimensional matrix of pixel darkness values. The 0 value represents a white pixel, while 255 represents a black pixel. Everything in between is a shade of gray. Here's the code to display these fonts on your own machine:

# Let's look at a subplot of one of A in each font
f, plts = plt.subplots(5, sharex=True)
c = 91
for i in range(5):
    plts[i].pcolor(train[c + i * 558],
                   cmap=plt.cm.gray_r)

If your plot appears really wide, you can easily resize the window just using your mouse. It's often much more work to resize it ahead of time in Python if you're simply plotting interactively. Our goal is to decide which font an image belongs to, given that we have many other labeled images of the fonts. To expand the dataset and help avoid overfitting, we have also jittered each character around in the 36 x 36 area, giving us nine times as many data points.

It may be helpful to come back to this after working with later models. It's important to keep the original data in mind, no matter how advanced the final model is.

Logistic regression

If you're familiar with linear regression, you're halfway toward understanding logistic regression. Basically, we're going to assign a weight to each pixel in the image, then take the weighted sum of those pixels (beta for weights and X for pixels). This will give us a score for that image being a particular font. Every font will have its own set of weights, as they will value pixels differently. To convert these scores into proper probabilities (represented by Y), we will use what's called the softmax function to force their sum to be between 0 and 1, as illustrated next. Whatever probability is the greatest for a particular image, we will classify it into the associated class.

You can read more about the theory of logistic regression in most statistical modeling textbooks. Here is its formula:

Logistic regression

One good reference that focuses on applications is William H. Greene's Econometric Analysis, Pearson, published in the year 2012.

Getting data ready

Implementing logistic regression is pretty easy in TensorFlow and will serve as scaffolding for more complex machine learning algorithms. First, we need to convert our integer labels into a one-hot format. This means, instead of labeling an image with font class 2, we transform the label into [0, 0, 1, 0, 0]. That is, we stick 1 in position two (note 0-up counting is common in computer science) and 0 for every other class. Here's the code for our to_onehot function:

def to_onehot(labels,nclasses = 5):
    '''
    Convert labels to "one-hot" format.
    >>> a = [0,1,2,3]
    >>> to_onehot(a,5)
    array([[ 1.,  0.,  0.,  0.,  0.],
           [ 0.,  1.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  0.,  0.,  1.,  0.]])
    '''
    outlabels = np.zeros((len(labels),nclasses))
    for i,l in enumerate(labels):
        outlabels[i,l] = 1
    return outlabels

With this done, we can go ahead and call the function:

onehot = to_onehot(labels)

For the pixels, we don't really want a matrix in this case, so we'll flatten the 36 x 36 numbers into a one-dimensional vector of length 1,296, but this will come a little bit later. Also, recall that we've rescaled the pixel values of 0-255 so that they fall between 0 and 1.

Okay, our final piece of preparation is to split our dataset into training and validation sets. This will help us catch overfitting later on. The training set will help us determine the weights in our logistic regression model, and the validation set will just be used to confirm that those weights are reasonably correct on new data:

# Split data into training and validation
indices = np.random.permutation(train.shape[0])
valid_cnt = int(train.shape[0] * 0.1)
test_idx, training_idx = indices[:valid_cnt],\
                         indices[valid_cnt:]
test, train = train[test_idx,:],\
              train[training_idx,:]
onehot_test, onehot_train = onehot[test_idx,:],\
                        onehot[training_idx,:]

Building a TensorFlow model

Okay, let's kick off the TensorFlow code by creating an interactive session:

sess = tf.InteractiveSession()

With this, we've started our first model in TensorFlow.

We're going to use a placeholder variable for x, which represents our input images. This is just to tell TensorFlow that we will supply the value for this node via feed_dict later on:

# These will be inputs
## Input pixels, flattened
x = tf.placeholder("float", [None, 1296])

Also, note that we can specify the shape of this tensor, and here we have used None as one of the sizes. The None size allows us to send an arbitrary number of data points into the algorithm at once for batch processing. We'll use the variable y_ likewise to hold our known labels to be used for training later on:

## Known labels
y_ = tf.placeholder("float", [None,5])

To perform logistic regression, we need a set of weights (W). In fact, we need 1,296 weights for each of the five font classes, which will give us our shape. Note that we also want to include an extra weight for each class as a bias (b). This is the same as adding an extra input variable that always takes the value 1:

# Variables
W = tf.Variable(tf.zeros([1296,5]))
b = tf.Variable(tf.zeros([5]))

With all these TensorFlow variables floating around, we need to make sure they get initialized. Let's call them now:

# Just initialize
sess.run(tf.global_variables_initializer())

Good job! You've got everything prepared. Now you can implement the softmax formula to compute probabilities. Because we set up our weights and input very carefully, TensorFlow makes this task very easy with just a call to tf.matmul and tf.nn.softmax:

# Define model
y = tf.nn.softmax(tf.matmul(x,W) + b)

That's it! You've implemented an entire machine learning classifier in TensorFlow. Nice work. But where do we get the values for the weights? Let's take a look at using TensorFlow to train the model.

Logistic regression training

First, you'll learn about the loss function for our machine learning classifier and implement it in TensorFlow. Then, we'll quickly train the model by evaluating the right TensorFlow node. Finally, we'll verify that our model is reasonably accurate and the weights make sense.

Developing the loss function

Optimizing our model really means minimizing how wrong we are. With our labels in one-hot style, it's easy to compare these with the class probabilities predicted by the model. The categorical cross_entropy function is a formal way to measure this. While the exact statistics are beyond the scope of this course, you can think of it as punishing the model for more for less accurate predictions. To compute it, we multiply our one-hot real labels element-wise with the natural log of the predicted probabilities, then sum these values and negate them. Conveniently, TensorFlow already includes this function as tf.nn.softmax_cross_entropy_with_logits() and we can just call that:

# Climb on cross-entropy
cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(
        logits = y + 1e-50, labels = y_))

Note that we are adding a small error value of 1e-50 here to avoid numerical instability problems.

Training the model

TensorFlow is convenient in that it provides built-in optimizers to take advantage of the loss function we just wrote. Gradient descent is a common choice and will slowly nudge our weights toward better results. This is the node that will update our weights:

# How we train
train_step = tf.train.GradientDescentOptimizer(
                0.02).minimize(cross_entropy)

Before we actually start training, we should specify a few more nodes to assess how well the model does:

# Define accuracy
correct_prediction = tf.equal(tf.argmax(y,1),
                     tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(
           correct_prediction, "float"))

The correct_prediction node is 1 if our model assigns the highest probability to the correct class, and 0 otherwise. The accuracy variable averages these predictions over the available data, giving us an overall sense of how well the model did.

When training in machine learning, we often want to use the same data point multiple times to squeeze all the information out. Each pass through the entire training data is called an epoch. Here, we're going to save both the training and validation accuracy every 10 epochs:

# Actually train
epochs = 1000
train_acc = np.zeros(epochs//10)
test_acc = np.zeros(epochs//10)
for i in tqdm(range(epochs)):
    # Record summary data, and the accuracy
    if i % 10 == 0:
        # Check accuracy on train set
        A = accuracy.eval(feed_dict={
            x: train.reshape([-1,1296]),
            y_: onehot_train})
        train_acc[i//10] = A
        # And now the validation set
        A = accuracy.eval(feed_dict={
            x: test.reshape([-1,1296]),
            y_: onehot_test})
        test_acc[i//10] = A
    train_step.run(feed_dict={
        x: train.reshape([-1,1296]),
        y_: onehot_train})

Note that we use feed_dict to pass in different types of data to get different output values. Finally, train_step.run updates the model every iteration. This should only take a few minutes on a typical computer, much less if you're using a GPU, and a bit more on an underpowered machine.

You just trained a model with TensorFlow; awesome!

Evaluating the model accuracy

After 1,000 epochs, let's take a look at the model. If you have Matplotlib installed, you can view the accuracies in a graphical plot; if not, you can still look at the number. For the final results, use the following code:

# Notice that accuracy flattens out
print(train_acc[-1])
print(test_acc[-1])

If you do have Matplotlib installed, you can use the following code to display the plot:

# Plot the accuracy curves
plt.figure(figsize=(6,6))
plt.plot(train_acc,'bo')
plt.plot(test_acc,'rx')

You should see something like the following plot (note that we used some random initialization, so it might not be exactly the same):

Evaluating the model accuracy

It seems like the validation accuracy flattens out after about 400-500 iterations; beyond this, our model may either be overfitting or not learning much more. Also, even though the final accuracy of about 40 percent might seem poor, recall that, with five classes, a totally random guess would only have 20 percent accuracy. With this limited dataset, the simple model is doing all it can.

It's also often helpful to look at computed weights. These can give you a clue as to what the model thinks is important. Let's plot them by pixel position for a given class:

# Look at a subplot of the weights for each font
f, plts = plt.subplots(5, sharex=True)
for i in range(5):
    plts[i].pcolor(W.eval()[:,i].reshape([36,36]))

This should give you a result similar to the following (again, if the plot comes out very wide, you can squeeze in the window size to square it up):

Evaluating the model accuracy

We can see that the weights near the interior are important in some models, while the weights on the outside are essentially zero. This makes sense, since none of the font characters reach the corners of the images.

Again, note that your final results might look a little different due to random initialization effects. Always feel free to experiment and change the parameters of the model; that's how you'll learn new things.

Summary

In this chapter, we installed TensorFlow on a machine we can use. After some small steps with basic computations, we jumped into a machine learning problem, successfully building a decent model with just logistic regression and a few lines of TensorFlow code.

In the next chapter, we'll see TensorFlow in its prime with deep neural networks.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore various possibilities with deep learning and gain amazing insights from data using Google’s brainchild-- TensorFlow
  • Want to learn what more can be done with deep learning? Explore various neural networks with the help of this comprehensive guide
  • Rich in concepts, advanced guide on deep learning that will give you background to innovate in your environment

Description

Dan Van Boxel’s Deep Learning with TensorFlow is based on Dan’s best-selling TensorFlow video course. With deep learning going mainstream, making sense of data and getting accurate results using deep networks is possible. Dan Van Boxel will be your guide to exploring the possibilities with deep learning; he will enable you to understand data like never before. With the efficiency and simplicity of TensorFlow, you will be able to process your data and gain insights that will change how you look at data. With Dan’s guidance, you will dig deeper into the hidden layers of abstraction using raw data. Dan then shows you various complex algorithms for deep learning and various examples that use these deep neural networks. You will also learn how to train your machine to craft new features to make sense of deeper layers of data. In this book, Dan shares his knowledge across topics such as logistic regression, convolutional neural networks, recurrent neural networks, training deep networks, and high level interfaces. With the help of novel practical examples, you will become an ace at advanced multilayer networks, image recognition, and beyond.

Who is this book for?

If you are a data scientist who performs machine learning on a regular basis, are familiar with deep neural networks, and now want to gain expertise in working with convoluted neural networks, then this book is for you. Some familiarity with C++ or Python is assumed.

What you will learn

  • Set up your computing environment and install TensorFlow
  • Build simple TensorFlow graphs for everyday computations
  • Apply logistic regression for classification with TensorFlow
  • Design and train a multilayer neural network with TensorFlow
  • Intuitively understand convolutional neural networks for image recognition
  • Bootstrap a neural network from simple to more accurate models
  • See how to use TensorFlow with other types of networks
  • Program networks with SciKit-Flow, a high-level interface to TensorFlow
Estimated delivery fee Deliver to United States

Economy delivery 10 - 13 business days

Free $6.95

Premium delivery 6 - 9 business days

$21.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 31, 2017
Length: 174 pages
Edition : 1st
Language : English
ISBN-13 : 9781787282773
Category :
Languages :
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to United States

Economy delivery 10 - 13 business days

Free $6.95

Premium delivery 6 - 9 business days

$21.95
(Includes tracking information)

Product Details

Publication date : Jul 31, 2017
Length: 174 pages
Edition : 1st
Language : English
ISBN-13 : 9781787282773
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 131.97
TensorFlow 1.x Deep Learning Cookbook
$48.99
Neural Network Programming with TensorFlow
$43.99
Hands-On Deep Learning with TensorFlow
$38.99
Total $ 131.97 Stars icon
Banner background image

Table of Contents

6 Chapters
1. Getting Started Chevron down icon Chevron up icon
2. Deep Neural Networks Chevron down icon Chevron up icon
3. Convolutional Neural Networks Chevron down icon Chevron up icon
4. Introducing Recurrent Neural Networks Chevron down icon Chevron up icon
5. Wrapping Up Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.8
(4 Ratings)
5 star 0%
4 star 25%
3 star 50%
2 star 0%
1 star 25%
Amazon buyer Sep 28, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Practical approach
Amazon Verified review Amazon
Maxwell B. Anselm May 11, 2018
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
If you've done some reading about machine learning and already know the gist of how neural networks work, this book will get you up to speed with some simple, practical examples. It's very light and handwavy on the theory, so I wouldn't recommend it to someone who is completely fresh to the topic. But I liked that it took a very hands-on approach with the code examples, explaining every line and generally doing things "the hard way" so that you actually felt like you were in control of the networks you set up.I followed along using the latest TensorFlow libraries available on Arch Linux and I was surprised that the examples were already a little out of date. I got quite a few deprecation warnings and one example was straight up broken because of outdated syntax, but it was easy to figure out how to fix everything.I happen to know that the author originally presented the material as a video series and this book was transcribed by a third party and... unfortunately, it shows. There are some weird wordings that I can only assume were incorrectly transcribed, and some of the text refers to code examples that must be downloaded separately as if they're right there in the text. But again, nothing got in the way of understanding the material.
Amazon Verified review Amazon
Dimitri Shvorob Mar 11, 2018
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Wishing to learn about TensorFlow, I decided to survey TF books available from Amazon, and pick one or two for further study. I excluded self-published offerings, and ended up with this longish list, dominated by Packt titles:"Machine Learning with TensorFlow" by Shukla, published by Manning in 2018-02, 272 pp, $43"Mastering TensorFlow 1.x" by Fandango, Packt, 2018-01, 474 pp, $35"Pro Deep Learning with TensorFlow" by Pattanayak, Apress, 2017-12, 398 pp, $37"TensorFlow 1.x Deep Learning Cookbook" by Gulli and Kapoor, Packt, 2017-12, 536 pp, $32"Neural Network Programming with TensorFlow" by Ghotra and Dua, Packt, 2017-11, 274 pp, $40"Predictive Analytics with TensorFlow" by Karim, Packt, 2017-11, 522 pp, $50"Machine Learning with TensorFlow 1.x" by Hua and Azeem, Packt, 2017-11, 304 pp, $39"Learning TensorFlow" by Hope and Resheff, O'Reilly, 2017-08, 242 pp, $25"Hands-On Deep Learning with TensorFlow" by Van Boxel, Packt, 2017-07, 174 pp, $35"Deep Learning with TensorFlow" by Zaccone, Karim and Menshawy, Packt, 2017-04, 320 pp, $50"TensorFlow Machine Learning Cookbook" by McClure, Packt, 2017-02, 370 pp, $30"Building Machine Learning Projects with TensorFlow" by Bonnin, Packt, 2016-11, 291 pp, $35"Getting Started with TensorFlow" by Zaccone, Packt, 2016-07, 180 pp, $35I reviewed the doc on tensorflow.org - including the doc for older releases - then started looking at books. One week later, I am still not done, but some options can already be discarded."Hands-On Deep Learning with TensorFlow" is one of them. The book is the thinnest of the bunch; with just 174 Packt pages - equivalent to under 100 of "regular" ones - to play with, it cannot really be a TensorFlow reference, only a (sketchy) TensorFlow introduction. In this case, page count is kept down by (with one exception) focusing on a single problem, MNIST character recognition. Despite a recent release date, the book does not cover the higher-level APIs of Estimators and Datasets, and adopts the "old school", low-level approach. It is really not bad, and does add value to the doc (for release 1.3 or so) and online treatments of "TensorFlow vs. MNIST", but the truth is, for $35, you can find something more substantial. Consider "Hands-On Deep Learning with TensorFlow" if you see it on sale.
Amazon Verified review Amazon
Lipin Pius Feb 28, 2018
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Please don't buy this book if you're looking for some good learning material
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela