Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Training Systems Using Python Statistical Modeling
Training Systems Using Python Statistical Modeling

Training Systems Using Python Statistical Modeling: Explore popular techniques for modeling your data in Python

eBook
$17.99 $26.99
Paperback
$38.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Training Systems Using Python Statistical Modeling

Introduction to Supervised Learning

In this chapter, we will discuss supervised learning and what it is all about. We will start this chapter by discussing the principles involved in different types of machine learning, with a particular focus on supervised learning. Then, we will look at various techniques used when training models. Finally, we will look at some common metrics that people use to judge how well an algorithm is performing.

The following topics will be covered in this chapter:

  • Principles of machine learning
  • Training models
  • Evaluating models

Principles of machine learning

Without much further ado, let's start teaching machines. We will start with the principles of machine learning. This section introduces the basic framework of machine learning models, particularly for supervised learning. This includes the different types of machine learning that exist, and what the objectives of machine learning are.

Machine learning comes in a few flavors, namely the following:

  • Supervised learning: This is machine learning for labeled data. We use data with labels or a target variable to train an algorithm and apply the algorithm to predict labels for unlabeled data. Algorithms such as support vector machines (SVMs), decision trees, and so on, engage in supervised learning. The rest of the chapter will focus on supervised learning.
  • Unsupervised learning: This is machine learning using unlabeled data. There is no labeled...

Training models

In this section, we will see supervised learning in action. We won't look at complicated algorithms, but we will look at how to train even a simple algorithm and machine learning best practices, such as splitting data into training and test data, and performing cross-validation.

Issues in training supervised learning models

When a model does not predict the target variable well, it underfits. This is true for both seen and unseen future data. Underfitting is when an algorithm trained to predict a value does so poorly both on the training data and on future, unseen data. Overfitting is when a model predicts training data well, but does not generalize well, and so predicts future data poorly. Data analysts...

Evaluating models

In this section, we will look at metrics for evaluating how well a model is performing. This section focuses on metrics to use to evaluate how well a model predicts a target variable in binary classification. We will discuss how to compute accuracy, precision, recall, the F1 score, and the Bayes factor, along with how to interpret each of these metrics.

Accuracy

Accuracy measures how frequently an algorithm predicted the correct label. On the surface, this looks like a good enough metric, but accuracy alone does not convey the quality of an algorithm. A problem could have an algorithm that is very accurate, but only because the learning problem is, in some sense, easy, such as predicting on any particular...

Summary

This brings us to the end of the chapter. In this chapter, we looked at the principles of machine learning, the various types of machine learning, and we also learned about supervised learning. We then trained a supervised learning model and then, finally, learned how to evaluate it using various performance metrics.

In the next chapter, we will start to look at actual machine learning models.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Get started with Python's rich suite of libraries for statistical modeling
  • Implement regression and clustering, and train neural networks from scratch
  • Discover real-world examples on training end-to-end machine learning systems in Python

Description

Python's ease-of-use and multi-purpose nature has made it one of the most popular tools for data scientists and machine learning developers. Its rich libraries are widely used for data analysis, and more importantly, for building state-of-the-art predictive models. This book is designed to guide you through using these libraries to implement effective statistical models for predictive analytics. You’ll start by delving into classical statistical analysis, where you will learn to compute descriptive statistics using pandas. You will focus on supervised learning, which will help you explore the principles of machine learning and train different machine learning models from scratch. Next, you will work with binary prediction models, such as data classification using k-nearest neighbors, decision trees, and random forests. The book will also cover algorithms for regression analysis, such as ridge and lasso regression, and their implementation in Python. In later chapters, you will learn how neural networks can be trained and deployed for more accurate predictions, and understand which Python libraries can be used to implement them. By the end of this book, you will have the knowledge you need to design, build, and deploy enterprise-grade statistical models for machine learning using Python and its rich ecosystem of libraries for predictive analytics.

Who is this book for?

If you are a data scientist, a statistician or a machine learning developer looking to train and deploy effective machine learning models using popular statistical techniques, then this book is for you. Knowledge of Python programming is required to get the most out of this book.

What you will learn

  • Understand the importance of statistical modeling
  • Learn about the different Python packages for statistical analysis
  • Implement algorithms such as Naive Bayes and random forests
  • Build predictive models from scratch using Python s scikit-learn library
  • Implement regression analysis and clustering
  • Learn how to train a neural network in Python

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : May 20, 2019
Length: 290 pages
Edition : 1st
Language : English
ISBN-13 : 9781838823733
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : May 20, 2019
Length: 290 pages
Edition : 1st
Language : English
ISBN-13 : 9781838823733
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 110.97
Training Systems Using Python Statistical Modeling
$38.99
Hands-On Deep Learning Architectures with Python
$32.99
Hands-On Deep Learning Algorithms with Python
$38.99
Total $ 110.97 Stars icon

Table of Contents

8 Chapters
Classical Statistical Analysis Chevron down icon Chevron up icon
Introduction to Supervised Learning Chevron down icon Chevron up icon
Binary Prediction Models Chevron down icon Chevron up icon
Regression Analysis and How to Use It Chevron down icon Chevron up icon
Neural Networks Chevron down icon Chevron up icon
Clustering Techniques Chevron down icon Chevron up icon
Dimensionality Reduction Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
(1 Ratings)
5 star 0%
4 star 0%
3 star 0%
2 star 0%
1 star 100%
Mehdi Dec 18, 2019
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
I expected a deep overview of implementation of statsitcal model, however, it's more like a class project.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.