Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Machine Learning Solutions Architect Handbook

You're reading from   The Machine Learning Solutions Architect Handbook Create machine learning platforms to run solutions in an enterprise setting

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801072168
Length 442 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
David Ping David Ping
Author Profile Icon David Ping
David Ping
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Solving Business Challenges with Machine Learning Solution Architecture
2. Chapter 1: Machine Learning and Machine Learning Solutions Architecture FREE CHAPTER 3. Chapter 2: Business Use Cases for Machine Learning 4. Section 2: The Science, Tools, and Infrastructure Platform for Machine Learning
5. Chapter 3: Machine Learning Algorithms 6. Chapter 4: Data Management for Machine Learning 7. Chapter 5: Open Source Machine Learning Libraries 8. Chapter 6: Kubernetes Container Orchestration Infrastructure Management 9. Section 3: Technical Architecture Design and Regulatory Considerations for Enterprise ML Platforms
10. Chapter 7: Open Source Machine Learning Platforms 11. Chapter 8: Building a Data Science Environment Using AWS ML Services 12. Chapter 9: Building an Enterprise ML Architecture with AWS ML Services 13. Chapter 10: Advanced ML Engineering 14. Chapter 11: ML Governance, Bias, Explainability, and Privacy 15. Chapter 12: Building ML Solutions with AWS AI Services 16. Other Books You May Enjoy

Data management architecture for ML

Depending on the scope of your ML initiatives, you may want to consider different data management architecture patterns to support them.

For small-scale ML projects with limited data scope, team size, and cross-functional dependencies, consider purpose-built data pipelines that meet the project's specific needs. For example, suppose you only need to work with structured data from an existing data warehouse and a dataset from the public domain. In that case, you want to consider building a simple data pipeline that extracts the required data from the data warehouse and the public domain to a storage location owned by the project team on an as-needed schedule for further analysis and processing. The following figure shows a simple data management flow to support a small-scope ML project:

Figure 4.2 – Data architecture for an ML project with limited scope

For large, enterprise-wide ML initiatives, the data...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime