Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The AI Product Manager's Handbook

You're reading from   The AI Product Manager's Handbook Develop a product that takes advantage of machine learning to solve AI problems

Arrow left icon
Product type Paperback
Published in Feb 2023
Publisher Packt
ISBN-13 9781804612934
Length 250 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Irene Bratsis Irene Bratsis
Author Profile Icon Irene Bratsis
Irene Bratsis
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 – Lay of the Land – Terms, Infrastructure, Types of AI, and Products Done Well
2. Chapter 1: Understanding the Infrastructure and Tools for Building AI Products FREE CHAPTER 3. Chapter 2: Model Development and Maintenance for AI Products 4. Chapter 3: Machine Learning and Deep Learning Deep Dive 5. Chapter 4: Commercializing AI Products 6. Chapter 5: AI Transformation and Its Impact on Product Management 7. Part 2 – Building an AI-Native Product
8. Chapter 6: Understanding the AI-Native Product 9. Chapter 7: Productizing the ML Service 10. Chapter 8: Customization for Verticals, Customers, and Peer Groups 11. Chapter 9: Macro and Micro AI for Your Product 12. Chapter 10: Benchmarking Performance, Growth Hacking, and Cost 13. Part 3 – Integrating AI into Existing Non-AI Products
14. Chapter 11: The Rising Tide of AI 15. Chapter 12: Trends and Insights across Industry 16. Chapter 13: Evolving Products into AI Products 17. Index 18. Other Books You May Enjoy

Model Development and Maintenance for AI Products

In this chapter, we will be exploring the nuances of model development, from linear regression to deep learning neural network models. We’ll cover the variety of models that are available to use, as well as what’s entailed for the maintenance of those models, from how they’re developed and trained to how they’re deployed and ultimately tested. This will be a basic overview to understand the end-to-end process of model maintenance that product managers can expect from the engineering and dev ops teams that support their products.

There’s a lot involved with bringing any new product to market, and if you’ve been a product manager for a while, you’re likely familiar with the new product development (NPD) process – or set of steps. As a precursor to the rest of the chapter, particularly for those that are unfamiliar with the NPD process, we’re going to be summarizing each...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime