Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow 2.0 Quick Start Guide

You're reading from   TensorFlow 2.0 Quick Start Guide Get up to speed with the newly introduced features of TensorFlow 2.0

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789530759
Length 196 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tony Holdroyd Tony Holdroyd
Author Profile Icon Tony Holdroyd
Tony Holdroyd
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to TensorFlow 2.00 Alpha
2. Introducing TensorFlow 2 FREE CHAPTER 3. Keras, a High-Level API for TensorFlow 2 4. ANN Technologies Using TensorFlow 2 5. Section 2: Supervised and Unsupervised Learning in TensorFlow 2.00 Alpha
6. Supervised Machine Learning Using TensorFlow 2 7. Unsupervised Learning Using TensorFlow 2 8. Section 3: Neural Network Applications of TensorFlow 2.00 Alpha
9. Recognizing Images with TensorFlow 2 10. Neural Style Transfer Using TensorFlow 2 11. Recurrent Neural Networks Using TensorFlow 2 12. TensorFlow Estimators and TensorFlow Hub 13. Converting from tf1.12 to tf2
14. Other Books You May Enjoy

Linear regression

A linear regression problem is one where you have to predict the value of one continuous variable, given the value of one or more other variables (data points); for example, predicting the selling price of a house, given its floor space. You can plot the known features with their associated labels on a simple linear graph in these examples, as in the familiar x, y scatter plots, and plot a line that best fits the data. This is known as a line of best fit. You can then read off the label corresponding to any value of your feature that lies within the x range of the plot.

However, linear regression problems may involve several features in which the terminology multiple or multivariate linear regression is used. In this case, it is not a line that best fits the data, but a plane (two features) or a hyperplane (more than two features). In the house price example...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime