Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Spring Microservices

You're reading from   Spring Microservices Internet-scale architecture with Spring framework, Spring Cloud, Spring Boot

Arrow left icon
Product type Paperback
Published in Jun 2016
Publisher Packt
ISBN-13 9781786466686
Length 436 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rajesh R V Rajesh R V
Author Profile Icon Rajesh R V
Rajesh R V
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Demystifying Microservices 2. Building Microservices with Spring Boot FREE CHAPTER 3. Applying Microservices Concepts 4. Microservices Evolution – A Case Study 5. Scaling Microservices with Spring Cloud 6. Autoscaling Microservices 7. Logging and Monitoring Microservices 8. Containerizing Microservices with Docker 9. Managing Dockerized Microservices with Mesos and Marathon 10. The Microservices Development Life Cycle Index

Data analysis using data lakes


Similarly to the scenario of fragmented logs and monitoring, fragmented data is another challenge in the microservice architecture. Fragmented data poses challenges in data analytics. This data may be used for simple business event monitoring, data auditing, or even deriving business intelligence out of the data.

A data lake or data hub is an ideal solution to handling such scenarios. An event-sourced architecture pattern is generally used to share the state and state changes as events with an external data store. When there is a state change, microservices publish the state change as events. Interested parties may subscribe to these events and process them based on their requirements. A central event store may also subscribe to these events and store them in a big data store for further analysis.

One of the commonly followed architectures for such data handling is shown in the following diagram:

State change events generated from the microservice—in our case...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image