Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala Functional Programming Patterns

You're reading from   Scala Functional Programming Patterns Grok and perform effective functional programming in Scala

Arrow left icon
Product type Paperback
Published in Dec 2015
Publisher
ISBN-13 9781783985845
Length 298 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Atul S. Khot Atul S. Khot
Author Profile Icon Atul S. Khot
Atul S. Khot
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Grokking the Functional Way FREE CHAPTER 2. Singletons, Factories, and Builders 3. Recursion and Chasing your Own Tail 4. Lazy Sequences – Being Lazy, Being Good 5. Taming Multiple Inheritance with Traits 6. Currying Favors with Your Code 7. Of Visitors and Chains of Responsibilities 8. Traversals – Mapping/Filtering/Folding/Reducing 9. Higher Order Functions 10. Actors and Message Passing 11. It's a Paradigm Shift Index

Tail recursion to the rescue


There is a technique, an optimization really, that helps us get out of the logjam. However, we need to tweak the code a bit for this. We will make the recursive call as the last and only call. This means that there is no intermediate context to remember. This last and only call is called the tail call. Code in this tail call form is amenable to TCO. Scala generates code that, behind the scenes, uses a loop—the generated code does not use any stack frames:

import 
scala.annotation.tailrec

def count(list: List[Int]): Int = {
  @tailrec   // 1
  def countIt(l: List[Int], acc: Int): Int = l match 
{
  
  case Nil => acc // 2
    case head :: tail => countIt(tail, acc+1) // 3 
  }
  countIt(list, 0)
}

The changes are like this:

We have a nested workhorse method that is doing all the hard work. The count method calls the countIt nested recursive method, with the list it got in the argument, and an accumulator. The earlier intermediate context is now expressed...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image