This chapter will introduce unsupervised applications of deep learning using autoencoders. In this chapter, we will cover the following topics:
- Setting up autoencoders
- Data normalization
- Setting up a regularized autoencoder
- Fine-tuning the parameters of the autoencoder
- Setting up stacked autoencoders
- Setting up denoising autoencoders
- Building and comparing stochastic encoders and decoders
- Learning manifolds from autoencoders
- Evaluating the sparse decomposition