Search icon CANCEL
Subscription
0
Cart icon
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Python Machine Learning

You're reading from  Python Machine Learning

Product type Book
Published in Sep 2015
Publisher Packt
ISBN-13 9781783555130
Pages 454 pages
Edition 1st Edition
Languages
Author (1):
Sebastian Raschka Sebastian Raschka
Profile icon Sebastian Raschka

Table of Contents (21) Chapters

Python Machine Learning
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Giving Computers the Ability to Learn from Data 2. Training Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using Scikit-learn 4. Building Good Training Sets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Training Artificial Neural Networks for Image Recognition 13. Parallelizing Neural Network Training with Theano Index

Using regularized methods for regression


As we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, regularization is one approach to tackle the problem of overfitting by adding additional information, and thereby shrinking the parameter values of the model to induce a penalty against complexity. The most popular approaches to regularized linear regression are the so-called Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net method.

Ridge regression is an L2 penalized model where we simply add the squared sum of the weights to our least-squares cost function:

Here:

By increasing the value of the hyperparameter , we increase the regularization strength and shrink the weights of our model. Please note that we don't regularize the intercept term .

An alternative approach that can lead to sparse models is the LASSO. Depending on the regularization strength, certain weights can become zero, which makes the LASSO also useful as...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}