Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Perform data collection, data processing, wrangling, visualization, and model building using Python

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781789955248
Length 478 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Avinash Navlani Avinash Navlani
Author Profile Icon Avinash Navlani
Avinash Navlani
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Foundation for Data Analysis
2. Getting Started with Python Libraries FREE CHAPTER 3. NumPy and pandas 4. Statistics 5. Linear Algebra 6. Section 2: Exploratory Data Analysis and Data Cleaning
7. Data Visualization 8. Retrieving, Processing, and Storing Data 9. Cleaning Messy Data 10. Signal Processing and Time Series 11. Section 3: Deep Dive into Machine Learning
12. Supervised Learning - Regression Analysis 13. Supervised Learning - Classification Techniques 14. Unsupervised Learning - PCA and Clustering 15. Section 4: NLP, Image Analytics, and Parallel Computing
16. Analyzing Textual Data 17. Analyzing Image Data 18. Parallel Computing Using Dask 19. Other Books You May Enjoy

Autocorrelation

Autocorrelation, or lagged correlation, is the correlation between a time series and its lagged series. It indicates the trend in the dataset. The autocorrelation formula can be defined as follows:

We can calculate the autocorrelation using the NumPy correlate() function to calculate the actual autocorrelation of sunspot cycles. We can also directly visualize the autocorrelation plot using the autocorrelation_plot() function. Let's compute the autocorrelation and visualize it:

# import needful libraries
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt

# Read the dataset
data = sm.datasets.sunspots.load_pandas().data

# Calculate autocorrelation using numpy
dy = data.SUNACTIVITY - np.mean(data.SUNACTIVITY)
dy_square = np.sum(dy ** 2)

# Cross-correlation
sun_correlated = np.correlate(dy, dy, mode='full')/dy_square
result = sun_correlated[int(len(sun_correlated)/2)...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime