Most real-world machine learning problems use supervised learning. In supervised learning, the model will learn from a labeled training dataset. A label is a target variable that we want to predict. It is an extra piece of information that helps in making decisions or predictions, for example, which loan application is safe or risky, whether a patient suffers from a disease or not, house prices, and credit eligibility scores. These labels act as a supervisor or teacher for the learning process. Supervised learning algorithms can be of two types: classification or regression. A classification problem has a categorical target variable, such as a loan application status as safe or risky, whether a patient suffers from a "disease" or "not disease," or whether a customer is "potential" or "not potential...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand