Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Convolutional Neural Networks

You're reading from   Practical Convolutional Neural Networks Implement advanced deep learning models using Python

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788392303
Length 218 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Mohit Sewak Mohit Sewak
Author Profile Icon Mohit Sewak
Mohit Sewak
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Pradeep Pujari Pradeep Pujari
Author Profile Icon Pradeep Pujari
Pradeep Pujari
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Deep Neural Networks – Overview 2. Introduction to Convolutional Neural Networks FREE CHAPTER 3. Build Your First CNN and Performance Optimization 4. Popular CNN Model Architectures 5. Transfer Learning 6. Autoencoders for CNN 7. Object Detection and Instance Segmentation with CNN 8. GAN: Generating New Images with CNN 9. Attention Mechanism for CNN and Visual Models 10. Other Books You May Enjoy

History of CNNs

There have been numerous attempts to recognize pictures by machines for decades. It is a challenge to mimic the visual recognition system of the human brain in a computer. Human vision is the hardest to mimic and most complex sensory cognitive system of the brain. We will not discuss biological neurons here, that is, the primary visual cortex, but rather focus on artificial neurons. Objects in the physical world are three dimensional, whereas pictures of those objects are two dimensional. In this book, we will introduce neural networks without appealing to brain analogies. In 1963, computer scientist Larry Roberts, who is also known as the father of computer vision, described the possibility of extracting 3D geometrical information from 2D perspective views of blocks in his research dissertation titled BLOCK WORLD. This was the first breakthrough...

You have been reading a chapter from
Practical Convolutional Neural Networks
Published in: Feb 2018
Publisher: Packt
ISBN-13: 9781788392303
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime