Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Business Intelligence

You're reading from   Practical Business Intelligence Optimize Business Intelligence for Efficient Data Analysis

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781785885433
Length 352 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ahmed Sherif Ahmed Sherif
Author Profile Icon Ahmed Sherif
Ahmed Sherif
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Practical Business Intelligence
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Introduction to Practical Business Intelligence FREE CHAPTER 2. Web Scraping 3. Analysis with Excel and Creating Interactive Maps and Charts with Power BI 4. Creating Bar Charts with D3.js 5. Forecasting with R 6. Creating Histograms and Normal Distribution Plots with Python 7. Creating a Sales Dashboard with Tableau 8. Creating an Inventory Dashboard with QlikSense 9. Data Analysis with Microsoft SQL Server

Understanding business intelligence architecture


As this book progresses, I will continue to emphasize the benefits that arise when the bulk of logic used to produce datasets for visualization is pushed to the database level as opposed to the reporting level. There will always be exceptions, where there will be a need to produce some logic at the reporting level, and I will highlight those scenarios as they arise. Ultimately, the database is more adept at handling complex logic and will also be closer to the source of information, so this will make data quality and data validation more straightforward. If we minimize the number of locations where the logic that feeds a particular BI tool is applied, we can retain our single source of truth for our users. For example, if the requirement for a BI dashboard is to show the current and previous years' sales for US regions only, the filter for region code would be ideally applied in the data warehouse as opposed to within the BI tool. The following is a query written in SQL joining two tables from the AdventureWorks database; it highlights the difference between dimensions and measures. The region column is a dimension column and SalesYTD and SalesPY are measure columns:

Select  
region.Name as Region, round(sum(sales.SalesYTD),2) as SalesYTD, round(sum(sales.SalesLastYear),2) as SalesPY 
FROM [AdventureWorks2014].[Sales].[SalesTerritory] region 
left outer join [AdventureWorks2014].[Sales].[SalesPerson] sales on 
sales.TerritoryID = region.TerritoryID 
where region.CountryRegionCode = 'US' 
Group by region.Name 
order by region.Name asc 

In this example, TerritoryID is serving as the key join between SalesTerritory and 'SalesPerson'. Since the measures are coming from the SalesPerson table, that table will serve as the fact table and SalesPerson.TerritoryID will serve as the foreign key. Since the Region column is dimensional and coming from the SalesTerritory table, that table will serve as the dimensional or lookup table and SalesTerritory.TerritoryID will serve as the dimension ID. In a finely tuned data warehouse, both the fact ID and the dimension ID would be indexed to allow efficient query performance. The output of the SQL statement can be seen in the following screenshot:

This performance is obtained by sorting IDs numerically so that a row from one table that is being joined to another table does not have to be searched through the entire table but only a subset of that table. When the table is only a few hundred rows, it may not seem necessary to index columns, but when the table grows to a few hundred million rows, it may become necessary.

Why is it then that quite often the logic is not applied at the database level but instead at the reporting level on a Tableau dashboard or a Qlik application? Frequently a user of the dashboard will get a request to filter out parts of the results. The user will go to the dashboard developer and put in the request. Sometimes this request goes through an arduous ticketing process with IT that could take weeks or even months. So rather than rely on IT to make the change, the dashboard developer will apply the filter logic at the reporting level instead. If these filters are being performed to correct data quality issues, then applying the logic at the reporting level just masks a more serious issue that needs to be addressed across the entire data warehouse. You will be performing a disservice in the long run as you will be establishing a precedent for data quality being handled by the report developer as opposed to the database administrator. This can ultimately take an organization down a slippery slope towards multiple sources of truth.

Ideal BI tools will quickly connect to the data source and then allow for slicing and dicing of your dimensions and measures in a manner that will quickly inform the business of useful and practical information. Ultimately, the choice of a BI tool by an individual or an organization will come down to the ease of use of the tool as well as the flexibility to showcase data through various components such as graphs, charts, widgets, and infographics.

You have been reading a chapter from
Practical Business Intelligence
Published in: Dec 2016
Publisher: Packt
ISBN-13: 9781785885433
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image