Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
NumPy Cookbook

You're reading from   NumPy Cookbook If you're a Python developer with basic NumPy skills, the 70+ recipes in this brilliant cookbook will boost your skills in no time. Learn to raise productivity levels and code faster and cleaner with the open source mathematical library.

Arrow left icon
Product type Paperback
Published in Oct 2012
Publisher Packt
ISBN-13 9781849518925
Length 226 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (17) Chapters Close

NumPy Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Winding Along with IPython FREE CHAPTER 2. Advanced Indexing and Array Concepts 3. Get to Grips with Commonly Used Functions 4. Connecting NumPy with the Rest of the World 5. Audio and Image Processing 6. Special Arrays and Universal Functions 7. Profiling and Debugging 8. Quality Assurance 9. Speed Up Code with Cython 10. Fun with Scikits Index

Trading periodically on dips


Stock prices periodically dip and go up. We will have a look at the probability distribution of the stock price log returns.

Let's start by downloading the historical data for a stock; for instance, AAPL. Next, calculate the daily log returns (http://en.wikipedia.org/wiki/Rate_of_return) of the close prices. We will skip these steps because they were already done in the previous recipe.

Getting ready

If necessary, install Matplotlib and SciPy. Refer to the See Also section for the corresponding recipes.

How to do it...

Now comes the interesting part.

  1. Calculate breakout and pullback.

    Let's say we want to trade five times per year, or roughly every 50 days. One strategy would be to buy when the price drops by a certain percentage—a pullback, and sell when the price increases by another percentage—a breakout.

    By setting the percentile appropriate for our trading frequency, we can match the corresponding log returns. SciPy offers the scoreatpercentile function, which we...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image