Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Neural Network Projects with Python

You're reading from   Neural Network Projects with Python The ultimate guide to using Python to explore the true power of neural networks through six projects

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789138900
Length 308 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
James Loy James Loy
Author Profile Icon James Loy
James Loy
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Machine Learning and Neural Networks 101 FREE CHAPTER 2. Predicting Diabetes with Multilayer Perceptrons 3. Predicting Taxi Fares with Deep Feedforward Networks 4. Cats Versus Dogs - Image Classification Using CNNs 5. Removing Noise from Images Using Autoencoders 6. Sentiment Analysis of Movie Reviews Using LSTM 7. Implementing a Facial Recognition System with Neural Networks 8. What's Next? 9. Other Books You May Enjoy

RNN

Up until now, we have used neural networks such as the MLP, feedforward neural network, and CNN in our projects. The constraint faced by these neural networks is that they only accept a fixed input vector such as an image, and output another vector. The high-level architecture of these neural networks can be summarized by the following diagram:

This restrictive architecture makes it difficult for CNNs to work with sequential data. To work with sequential data, the neural network needs to take in specific bits of the data at each time step, in the sequence that it appears. This provides the idea for an RNN. An RNN has high-level architecture, as shown in the following diagram:

From the previous diagram, we can see that an RNN is a multi-layered neural network. We can break up the raw input, splitting it into time steps. For example, if the raw input is a sentence, we can...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image