Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Understanding with Python

You're reading from   Natural Language Understanding with Python Combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781804613429
Length 326 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Deborah A. Dahl Deborah A. Dahl
Author Profile Icon Deborah A. Dahl
Deborah A. Dahl
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Getting Started with Natural Language Understanding Technology
2. Chapter 1: Natural Language Understanding, Related Technologies, and Natural Language Applications FREE CHAPTER 3. Chapter 2: Identifying Practical Natural Language Understanding Problems 4. Part 2:Developing and Testing Natural Language Understanding Systems
5. Chapter 3: Approaches to Natural Language Understanding – Rule-Based Systems, Machine Learning, and Deep Learning 6. Chapter 4: Selecting Libraries and Tools for Natural Language Understanding 7. Chapter 5: Natural Language Data – Finding and Preparing Data 8. Chapter 6: Exploring and Visualizing Data 9. Chapter 7: Selecting Approaches and Representing Data 10. Chapter 8: Rule-Based Techniques 11. Chapter 9: Machine Learning Part 1 – Statistical Machine Learning 12. Chapter 10: Machine Learning Part 2 – Neural Networks and Deep Learning Techniques 13. Chapter 11: Machine Learning Part 3 – Transformers and Large Language Models 14. Chapter 12: Applying Unsupervised Learning Approaches 15. Chapter 13: How Well Does It Work? – Evaluation 16. Part 3: Systems in Action – Applying Natural Language Understanding at Scale
17. Chapter 14: What to Do If the System Isn’t Working 18. Chapter 15: Summary and Looking to the Future 19. Index 20. Other Books You May Enjoy

Representing documents with TF-IDF and classifying with Naïve Bayes

In addition to evaluation, two important topics in the general paradigm of machine learning are representation and processing algorithms. Representation involves converting a text, such as a document, into a numerical format that preserves relevant information about the text. This information is then analyzed by the processing algorithm to perform the NLP application. You’ve already seen a common approach to representation, TF-IDF, in Chapter 7. In this section, we will cover using TF-IDF with a common classification approach, Naïve Bayes. We will explain both techniques and show an example.

Summary of TF-IDF

You will recall the discussion of TF-IDF from Chapter 7. TF-IDF is based on the intuitive goal of trying to find words in documents that are particularly diagnostic of their classification topic. Words that are relatively infrequent in the whole corpus, but which are relatively common in...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime