Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Natural Language Processing Fundamentals

You're reading from   Natural Language Processing Fundamentals Build intelligent applications that can interpret the human language to deliver impactful results

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher
ISBN-13 9781789954043
Length 374 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Dwight Gunning Dwight Gunning
Author Profile Icon Dwight Gunning
Dwight Gunning
Sohom Ghosh Sohom Ghosh
Author Profile Icon Sohom Ghosh
Sohom Ghosh
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Natural Language Processing FREE CHAPTER 2. Basic Feature Extraction Methods 3. Developing a Text classifier 4. Collecting Text Data from the Web 5. Topic Modeling 6. Text Summarization and Text Generation 7. Vector Representation 8. Sentiment Analysis Appendix

Training Sentiment Models

The end product of any sentiment analysis project is a sentiment model. This is an object containing a stored representation of the data on which it was trained. Such a model has the ability to predict sentiment values for text that it has not seen before. To develop a sentiment analysis model, the following steps need to be taken:

  1. Split the document dataset into two, namely train and test datasets. The test dataset is normally a fraction of the overall dataset. It is usually between 5% and 40% of the overall dataset, depending on the total number of examples available. If you have a lot of data, then you can afford to have a smaller test dataset.
  2. Preprocess the text by stripping unwanted characters, removing stop words, and performing other common preprocessing steps.
  3. Extract the features by converting the text to numeric vector representations. These representations are used for training machine learning models.
  4. Run the model's...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime