Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning on AWS

You're reading from   Mastering Machine Learning on AWS Advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789349795
Length 306 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Maximo Gurmendez Maximo Gurmendez
Author Profile Icon Maximo Gurmendez
Maximo Gurmendez
Dr. Saket S.R. Mengle Dr. Saket S.R. Mengle
Author Profile Icon Dr. Saket S.R. Mengle
Dr. Saket S.R. Mengle
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: Machine Learning on AWS FREE CHAPTER
2. Getting Started with Machine Learning for AWS 3. Section 2: Implementing Machine Learning Algorithms at Scale on AWS
4. Classifying Twitter Feeds with Naive Bayes 5. Predicting House Value with Regression Algorithms 6. Predicting User Behavior with Tree-Based Methods 7. Customer Segmentation Using Clustering Algorithms 8. Analyzing Visitor Patterns to Make Recommendations 9. Section 3: Deep Learning
10. Implementing Deep Learning Algorithms 11. Implementing Deep Learning with TensorFlow on AWS 12. Image Classification and Detection with SageMaker 13. Section 4: Integrating Ready-Made AWS Machine Learning Services
14. Working with AWS Comprehend 15. Using AWS Rekognition 16. Building Conversational Interfaces Using AWS Lex 17. Section 5: Optimizing and Deploying Models through AWS
18. Creating Clusters on AWS 19. Optimizing Models in Spark and SageMaker 20. Tuning Clusters for Machine Learning 21. Deploying Models Built in AWS 22. Other Books You May Enjoy Appendix: Getting Started with AWS

Predicting User Behavior with Tree-Based Methods

This chapter will introduce decision trees, random forests, and gradient-boosted trees. The use of decision trees is popular in data science because they provide a visual representation of how the information in the training set can be represented as a hierarchy. Traversing the hierarchy based on an observation helps you to predict the probability of that event. We will explore how these algorithms can be used to predict when a user may click on online advertisement based on existing advertising click records. Additionally, we will show how to use AWS Elastic MapReduce (EMR) with Apache Spark and the SageMaker XGBoost service to engineer models in the context of big data.

In this chapter, we will cover the following topics:

  • Understanding decision trees
  • Understanding random forests algorithms
  • Understanding gradient boosting algorithms...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime