Continuous integration and deployment
Kubernetes is a great platform for running your microservice-based applications. But, at the end of the day, it is an implementation detail. Users, and often most developers, may not be aware that the system is deployed on Kubernetes. But Kubernetes can change the game and make things that were too difficult before possible.
In this section, we'll explore the CI/CD pipeline and what Kubernetes brings to the table. At the end of this section you'll be able to design CI/CD pipelines that take advantage of Kubernetes properties such as easy-scaling and development-production parity to improve the productivity and robustness of day-to-day development and deployment.
What is a CI/CD pipeline?
A CI/CD pipeline is a set of steps that a set of changes by developers or operators that modify the code, data or configuration of a system, test them and deploys them to production. Some pipelines are fully automated and some are semi-automated with human checks. In large organizations, there may be test and staging environments where changes are deployed to automatically, but release to production requires manual intervention. The following diagram describes a typical pipeline.
It may be worth mentioning that developers can be completely isolated from production infrastructure. Their interface is just a Git workflow, where a good example is Deis Workflow (PaaS on Kubernetes, similar to Heroku):
Designing a CI/CD pipeline for Kubernetes
When your deployment target is a Kubernetes cluster, you should rethink some traditional practices. For starters, packaging is different. You need to bake images for your containers. Reverting code changes is super easy and instantaneous by using smart labeling. It gives you a lot of confidence that, if a bad change slips through the testing net, somehow you'll be able to revert to the previous version immediately. But you want to be careful there. Schema changes and data migrations can't be automatically rolled back. Another unique capability of Kubernetes is that developers can run a whole cluster locally. That takes some work when you design your cluster, but since the microservices that comprise your system run in containers, and those containers interact via APIs, it is possible and practical to do. As always, if your system is very data-driven, you will need to accommodate for that and provide data snapshots and synthetic data that your developers can use.