Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Learning Real-time Analytics with Storm and Cassandra
Learning Real-time Analytics with Storm and Cassandra

Learning Real-time Analytics with Storm and Cassandra: Solve real-time analytics problems effectively using Storm and Cassandra

Arrow left icon
Profile Icon Shilpi Saxena
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5 (2 Ratings)
Paperback Mar 2015 220 pages 1st Edition
eBook
$9.99 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Shilpi Saxena
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5 (2 Ratings)
Paperback Mar 2015 220 pages 1st Edition
eBook
$9.99 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$9.99 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Learning Real-time Analytics with Storm and Cassandra

Chapter 1. Let's Understand Storm

In this chapter, you will be acquainted with the problems requiring distributed computed solutions and get to know how complex it could get to create and manage such solutions. We will look at the options available to solve distributed computation.

The topics that will be covered in the chapter are as follows:

  • Getting acquainted with a few problems that require distributed computing solutions
  • The complexity of existing solutions
  • Technologies offering real-time distributed computing
  • A high-level view of the various components of Storm
  • A quick peek into the internals of Storm

By the end of the chapter, you will be able to understand the real-time scenarios and applications of Apache Storm. You should be aware of solutions available in the market and reasons as to why Storm is still the best open source choice.

Distributed computing problems

Let's dive deep and identify some of the problems that require distributed solutions. In the world we live in today, we are so attuned to the power of now and that's the paradigm that generated the need for distributed real-time computing. Sectors such as banking, healthcare, automotive manufacturing, and so on are hubs where real-time computing can either optimize or enhance the solutions.

Real-time business solution for credit or debit card fraud detection

Let's get acquainted with the problem depicted in the following figure; when we make any transaction using plastic money and swipe our debit or credit card for payment, the duration within which the bank has to validate or reject the transaction is less than five seconds. In less than five seconds, data or transaction details have to be encrypted, travel over secure network from servicing back bank to the issuing bank, then at the issuing back bank the entire fuzzy logic for acceptance or decline of the transaction has to be computed, and the result has to travel back over the secure network:

Real-time business solution for credit or debit card fraud detection

Real-time credit card fraud detection

The challenges such as network latency and delay can be optimized to some extent, but to achieve the preceding featuring transaction in less than 5 seconds, one has to design an application that is able to churn a considerable amount of data and generate results within 1 to 2 seconds.

Aircraft Communications Addressing and Reporting system

The Aircraft Communications Addressing and Reporting system (ACAR) demonstrates another typical use case that cannot be implemented without having a reliable real-time processing system in place. These Aircraft communication systems use satellite communication (SATCOM), and as per the following figure, they gather voice and packet data from all phases of flight in real time and are able to generate analytics and alerts on the data in real time.

Aircraft Communications Addressing and Reporting system

Let's take the example from the figure in the preceding case. A flight encounters some real hazardous weather, say, electric Storms on a route, then that information is sent through satellite links and voice or data gateways to the air controller, which in real time detects and raises the alerts to deviate routes for all other flights passing through that area.

Healthcare

Here, let's introduce you to another problem on healthcare.

This is another very important domain where real-time analytics over high volume and velocity data has equipped the healthcare professionals with accurate and exact information in real time to take informed life-saving actions.

Healthcare

The preceding figure depicts the use case where doctors can take informed action to handle the medical situation of the patients. Data is collated from historic patient databases, drug databases, and patient records. Once the data is collected, it is processed, and live statistics and key parameters of the patient are plotted against the same collated data. This data can be used to further generate reports and alerts to aid the health care professionals.

Other applications

There are varieties of other applications where the power of real-time computing can either optimize or help people make informed decisions. It has become a great utility and aid in the following industries:

  • Manufacturing: A real-time defect detection mechanism can help optimize production costs. Generally, in the manufacturing segment QC is performed postproduction and there, due to one similar defect in goods, entire lot is rejected.
  • Transportation industry: Based on real-time traffic and weather data, transport companies can optimize their trade routes and save time and money.
  • Network optimization: Based on real-time network usage alerts, companies can design auto scale up and auto scale down systems for peak and off-peak hours.

Solutions for complex distributed use cases

Now that we understand the power that real-time solutions can get into various industry verticals, let's explore and find out what options we have to process vast amount of data being generated at a very fast pace.

The Hadoop solution

The Hadoop solution is one of the solutions to solve the problems that require dealing with humongous volumes of data. It works by executing jobs in a clustered setup.

MapReduce is a programming paradigm where we process large data sets by using a mapper function that processes a key and value pair and thus generates intermediate output again in the form of a key-value pair. Then a reduce function operates on the mapper output and merges the values associated with the same intermediate key and generates a result.

The Hadoop solution

In the preceding figure, we demonstrate the simple word count MapReduce job where the simple word count job is being demonstrated using the MapReduce where:

  • There is a huge Big Data store, which can go up to zettabytes or petabytes.
  • Input datasets or files are split into blocks of configured size and each block is replicated onto multiple nodes in the Hadoop cluster depending upon the replication factor.
  • Each mapper job counts the number of words on the data blocks allocated to it.
  • Once the mapper is done, the words (which are actually the keys) and their counts are stored in a local file on the mapper node. The reducer then starts the reduce function and thus generates the result.
  • Reducers combine the mapper output and the final results are generated.

Big data, as we know, did provide a solution to processing and generating results out of humongous volumes of data, but that's predominantly a batch processing system and has almost no utility on a real-time use case.

A custom solution

Here we talk about a solution that was used in the social media world before we had a scalable framework such as Storm. A simplistic version of the problem could be that you need a real-time count of the tweets by each user; Twitter solved the problem by following the mechanism shown in the figure:

A custom solution

Here is the detailed information of how the preceding mechanism works:

  • A custom solution created a fire hose or queue onto which all the tweets are pushed.
  • A set of workers' nodes read data from the queue, parse the messages, and maintain counts of tweets by each user. The solution is scalable, as we can increase the number of workers to handle more load in the system. But the sharding algorithm for random distribution of the data among these workers nodes' should ensure equal distribution of data to all workers.
  • These workers assimilate this first level count into the next set of queues.
  • From these queues (the ones mentioned at level 1) second level of workers pick from these queues. Here, the data distribution among these workers is neither equal, nor random. The load balancing or the sharding logic has to ensure that tweets from the same user should always go to the same worker, to get the correct counts. For example, lets assume we have different users— "A, K, M, P, R, and L" and we have two workers "worker A" and "worker B". The tweets from user "A, K, and M" always goes to "worker A", and those of "P, R, and L users" goes to "worker B"; so the tweet counts for "A, K, and M" are always maintained by "worker A". Finally, these counts are dumped into the data store.

The queue-worker solution described in the preceding points works fine for our specific use case, but it has the following serious limitations:

  • It's very complex and specific to the use case
  • Redeployment and reconfiguration is a huge task
  • Scaling is very tedious
  • The system is not fault tolerant

Licensed proprietary solutions

After an open source Hadoop and custom Queue-worker solution, let's discuss the licensed options' proprietary solutions in the market to cater to the distributed real-time processing needs.

The Alabama Occupational Therapy Association (ALOTA) of big companies has invested in such products, because they clearly see where the future of computing is moving to. They can foresee demands of such solutions and support them in almost every vertical and domain. They have developed such solutions and products that let us do complex batch and real-time computing but that comes at a heavy license cost. A few solutions to name are from companies such as:

  • IBM: IBM has developed InfoSphere Streams for real-time ingestion, analysis, and correlation of data.
  • Oracle: Oracle has a product called Real Time Decisions (RTD) that provides analysis, machine learning, and predictions in real-time context
  • GigaSpaces: GigaSpaces has come up with a product called XAP that provides in-memory computation to deliver real-time results

Other real-time processing tools

There are few other technologies that have some similar traits and features such as Apache Storm and S4 from Yahoo, but it lacks guaranteed processing. Spark is essentially a batch processing system with some features on micro-batching, which could be utilized as real time.

A high-level view of various components of Storm

In this section, we will get you acquainted with various components of Storm, their role, and their distribution in a Storm cluster.

A Storm cluster has three sets of nodes (which could be co-located, but are generally distributed in clusters), which are as follows:

  • Nimbus
  • Zookeeper
  • Supervisor

The following figure shows the integration hierarchy of these nodes:

A high-level view of various components of Storm

The detailed explanation of the integration hierarchy is as follows:

  • Nimbus node (master node, similar to Hadoop-JobTracker): This is the heart of the Storm cluster. You can say that this is the master daemon process that is responsible for the following:
    • Uploading and distributing various tasks across the cluster
    • Uploading and distributing the topology jars jobs across various supervisors
    • Launching workers as per ports allocated on the supervisor nodes
    • Monitoring the topology execution and reallocating workers whenever necessary
    • Storm UI is also executed on the same node
  • Zookeeper nodes: Zookeepers can be designated as the bookkeepers in the Storm cluster. Once the topology job is submitted and distributed from the Nimbus nodes, then even if Nimbus dies the topology would continue to execute because as long as Zookeepers are alive, the workable state is maintained and logged by them. The main responsibility of this component is to maintain the operational state of the cluster and restore the operational state if recovery is required from some failure. It's the coordinator for the Storm cluster.
  • Supervisor nodes: These are the main processing chambers in the Storm topology; all the action happens in here. These are daemon processes that listen and manage the work assigned. These communicates with Nimbus through Zookeeper and starts and stops workers according to signals from Nimbus.

Delving into the internals of Storm

Now that we know which physical components are present in a Storm cluster, let's understand what happens inside various Storm components when a topology is submitted. When we say topology submission, it means that we have submitted a distributed job to Storm Nimbus for execution over the cluster of supervisors. In this section, we will explain the various steps that are executed in various Storm components when a Storm topology is executed:

  • Topology is submitted on the Nimbus node.
  • Nimbus uploads the code jars on all the supervisors and instructs the supervisors to launch workers as per the NumWorker configuration or the TOPOLOGY_WORKERS configuration defined in Storm.
  • During the same duration all the Storm nodes (Nimbus and Supervisors) constantly co-ordinate with the Zookeeper clusters to maintain a log of workers and their activities.

As per the following figure, we have depicted the topology and distribution of the topology components, which are the same across clusters:

Delving into the internals of Storm

In our case, let's assume that our cluster constitutes of one Nimbus node, three Zookeepers in a Zookeeper cluster, and one supervisor node.

By default, we have four slots allocated to each supervisor, so four workers would be launched per Storm supervisor node unless the configuration is tweaked.

Let's assume that the depicted topology is allocated four workers, and it has two bolts each with a parallelism of two and one spout with a parallelism of four. So in total, we have eight tasks to be distributed across four workers.

So this is how the topology would be executed: two workers on each supervisor and two executors within each worker, as shown in the following figure:

Delving into the internals of Storm

Quiz time

Q.1. Try to phrase a problem statement around real-time analytics in the following domains:

  • Network optimization
  • Traffic management
  • Remote sensing

Summary

In this chapter, you have understood the need for distributed computing by exploring various use cases in different verticals and domains. We have also walked you through various solutions to handle these problems and why Storm is the best choice in the open source world. You have also been introduced to Storm components and the action behind the scenes when these components are at work.

In the next chapter, we will walk through the setup aspects and you will get familiarized with programming structures in Storm by simple topologies.

Left arrow icon Right arrow icon

Description

If you want to efficiently use Storm and Cassandra together and excel at developing production-grade, distributed real-time applications, then this book is for you. No prior knowledge of using Storm and Cassandra together is necessary. However, a background in Java is expected.

Who is this book for?

If you want to efficiently use Storm and Cassandra together and excel at developing production-grade, distributed real-time applications, then this book is for you. No prior knowledge of using Storm and Cassandra together is necessary. However, a background in Java is expected.

What you will learn

  • Integrate Storm applications with RabbitMQ for realtime analysis and processing of messages
  • Monitor highly distributed applications using Nagios
  • Integrate the Cassandra data store with Storm
  • Develop and maintain distributed Storm applications in conjunction with Cassandra and In Memory Database (memcache)
  • Build a Trident topology that enables realtime computing with Storm
  • Tune performance for Storm topologies based on the SLA and requirements of the application
  • Use Esper with the Storm framework for rapid development of applications

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Mar 27, 2015
Length: 220 pages
Edition : 1st
Language : English
ISBN-13 : 9781784395490
Vendor :
Apache
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Mar 27, 2015
Length: 220 pages
Edition : 1st
Language : English
ISBN-13 : 9781784395490
Vendor :
Apache
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 152.97
Learning Apache Cassandra
$48.99
Learning Real-time Analytics with Storm and Cassandra
$48.99
Mastering Apache Cassandra - Second Edition
$54.99
Total $ 152.97 Stars icon
Banner background image

Table of Contents

13 Chapters
1. Let's Understand Storm Chevron down icon Chevron up icon
2. Getting Started with Your First Topology Chevron down icon Chevron up icon
3. Understanding Storm Internals by Examples Chevron down icon Chevron up icon
4. Storm in a Clustered Mode Chevron down icon Chevron up icon
5. Storm High Availability and Failover Chevron down icon Chevron up icon
6. Adding NoSQL Persistence to Storm Chevron down icon Chevron up icon
7. Cassandra Partitioning, High Availability, and Consistency Chevron down icon Chevron up icon
8. Cassandra Management and Maintenance Chevron down icon Chevron up icon
9. Storm Management and Maintenance Chevron down icon Chevron up icon
10. Advance Concepts in Storm Chevron down icon Chevron up icon
11. Distributed Cache and CEP with Storm Chevron down icon Chevron up icon
A. Quiz Answers Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5
(2 Ratings)
5 star 0%
4 star 50%
3 star 50%
2 star 0%
1 star 0%
Dipankar Dutta Jun 12, 2015
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
The Book provides valuable insights on the Real time use cases which can be put into production. The language is clear and lucid. It woild have been better if the design principles were discussed.
Amazon Verified review Amazon
rlsarc Jun 16, 2015
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Real-time Analytics with Storm and Cassandra is a good book to learn Storm's and Cassandra's basics as well as various uses cases of both. The book is much more comprehensive than I was expecting and easy to read as well, so it'll serve both as a getting-started guide for inexperienced developers and as a reference to implement more complex use cases.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.