Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Clojure for Data Science

You're reading from   Clojure for Data Science Statistics, big data, and machine learning for Clojure programmers

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher
ISBN-13 9781784397180
Length 608 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Henry Garner Henry Garner
Author Profile Icon Henry Garner
Henry Garner
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Statistics FREE CHAPTER 2. Inference 3. Correlation 4. Classification 5. Big Data 6. Clustering 7. Recommender Systems 8. Network Analysis 9. Time Series 10. Visualization Index

Probability


We have encountered probability in several guises so far in this book: as p-values, confidence intervals, and most recently as the output of logistic regression where the result can be considered as the probability of the output class being positive. The probabilities we calculated for the kappa statistic were the result of adding up counts and dividing by totals. The probability of agreement, for example, was calculated as the number of times the model and the data agreed divided by the number of samples. This way of calculating probabilities is referred to as frequentist, because it is concerned with the rates at which things happen.

An output of 1.0 from logistic regression (pre-rounding) corresponds to the certainty that the input is in the positive class; an output of 0.0 corresponds to the certainty that the input isn't in the positive class. An output of 0.5 corresponds to complete uncertainty about the output class. For example, if ลท = 0.7 the probability of y = 1 is 70...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image