Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Clojure for Data Science

You're reading from   Clojure for Data Science Statistics, big data, and machine learning for Clojure programmers

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher
ISBN-13 9781784397180
Length 608 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Henry Garner Henry Garner
Author Profile Icon Henry Garner
Henry Garner
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Statistics FREE CHAPTER 2. Inference 3. Correlation 4. Classification 5. Big Data 6. Clustering 7. Recommender Systems 8. Network Analysis 9. Time Series 10. Visualization Index

Summary

In this first chapter, we've learned about summary statistics and the value of distributions. We've seen how even a simple analysis can provide evidence of potentially fraudulent activity.

In particular, we've encountered the central limit theorem and seen why it goes such a long way towards explaining the ubiquity of the normal distribution throughout data science. An appropriate distribution can represent the essence of a large sequence of numbers in just a few statistics and we've implemented several of them using pure Clojure functions in this chapter. We've also introduced the Incanter library and used it to load, transform, and visually compare several datasets. We haven't been able to do much more than note a curious difference between two distributions, however.

In the next chapter, we'll extend what we've learned about descriptive statistics to cover inferential statistics. These will allow us to quantify a measured difference between two or more distributions and decide whether a difference is statistically significant. We'll also learn about hypothesis testing—a framework for conducting robust experiments that allow us to draw conclusions from data.

You have been reading a chapter from
Clojure for Data Science
Published in: Sep 2015
Publisher:
ISBN-13: 9781784397180
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image