Tableau's intuitive drag and drop interface is one of the key reasons it has become the de facto standard for data visualization. With its easy-to-use interface, not only analysts, but everyone can see and understand their data. But let's look at who mean when we say "everyone." Does this include sophisticated users like data scientists or statisticians? In short, yes, but their workflow is slightly different; they rely heavily on statistical and machine learning algorithms, usually only accessible from R, Python, or Matlab. To interact with these libraries, statisticians and data scientists have to write code, experiment with their model parameters, and visualize the results. The usual tool of choice for data scientists is some notebook environment—such as RStudio or Jupyter—where they can mix their code and the visualizations.
In the past, the number one reason for the lower adoption of Tableau for data scientists was the lack of support of this code-driven, iterative development methodology. However, with the Dashboard Extensions API and the Analytics Extensions API things have changed. The platform for everyone offers the best from code-driven data science and easy-to-use, drag-and-drop visualization worlds.