Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 recipes to build intelligent machine learning systems with the power of Python

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781789131680
Length 422 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest-Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow 12. Other Books You May Enjoy

Using placeholders and variables

Placeholders and variables are key tools in with regard to using computational graphs in TensorFlow. We must understand the difference between them and when to best use them to our advantage.

Getting ready

One of the most important distinctions to make with data is whether it is a placeholder or a variable. Variables are the model parameters of the algorithm, and TensorFlow keeps track of how to change these to optimize the algorithm. Placeholders are objects that allow you to feed in data of a specific type and shape, or that depend on the results of the computational graph, such as the expected outcome of a computation.

How to do it...

The main way to create a variable is by using the Variable() function, which takes a tensor as an input and outputs a variable. This is only the declaration, and we still need to initialize the variable. Initializing is what puts the variable with the corresponding methods on the computational graph. Here is an example of creating and initializing a variable:

my_var = tf.Variable(tf.zeros([2,3])) 
sess = tf.Session() 
initialize_op = tf.global_variables_initializer() 
sess.run(initialize_op) 

To see what the computational graph looks like after creating and initializing a variable, see the following part of this recipe. Placeholders are just holding the position for data to be fed into the graph. Placeholders get data from a feed_dict argument in the session. To put a placeholder into the graph, we must perform at least one operation on the placeholder. In the following code snippet, we initialize the graph, declare x to be a placeholder (of a predefined size), and define y as the identity operation on x, which just returns x. We then create data to feed into the x placeholder and run the identity operation. The code is shown here, and the resultant graph is in the following section:

sess = tf.Session() 
x = tf.placeholder(tf.float32, shape=[2,2]) 
y = tf.identity(x) 
x_vals = np.random.rand(2,2) 
sess.run(y, feed_dict={x: x_vals}) 
# Note that sess.run(x, feed_dict={x: x_vals}) will result in a self-referencing error. 
It is worth noting that TensorFlow will not return a self-referenced placeholder in the feed dictionary. In other words, running sess.run(x, feed_dict={x: x_vals}) in the following graph will return an error.

How it works...

The computational graph of initializing a variable as a tensor of zeros is shown in the following diagram:

Figure 1: Variable

Here, we can see what the computational graph looks like in detail with just one variable, initialized all to zeros. The grey shaded region is a very detailed view of the operations and constants that were involved. The main computational graph with less detail is the smaller graph outside of the grey region in the upper-right corner. For more details on creating and visualizing graphs, see the first section of Chapter 10, Taking TensorFlow to Production. Similarly, the computational graph of feeding a NumPy array into a placeholder can be seen in the following diagram:

Figure 2: The computational graph of an initialized placeholder

The grey shaded region is a very detailed view of the operations and constants that were involved. The main computational graph with less detail is the smaller graph outside of the grey region in the upper-right corner.

There's more...

During the run of the computational graph, we have to tell TensorFlow when to initialize the variables we have created. While each variable has an initializer method, the most common way to do this is with the helper function, that is, global_variables_initializer(). This function creates an operation in the graph that initializes all the variables we have created, as follows:

initializer_op = tf.global_variables_initializer() 

But if we want to initialize a variable based on the results of initializing another variable, we have to initialize variables in the order we want, as follows:

sess = tf.Session() 
first_var = tf.Variable(tf.zeros([2,3])) 
sess.run(first_var.initializer) 
second_var = tf.Variable(tf.zeros_like(first_var)) 
# 'second_var' depends on the 'first_var'
sess.run(second_var.initializer)
You have been reading a chapter from
TensorFlow Machine Learning Cookbook - Second Edition
Published in: Aug 2018
Publisher: Packt
ISBN-13: 9781789131680
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image