Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning

You're reading from   Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781789955750
Length 772 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data 2. Training Simple Machine Learning Algorithms for Classification FREE CHAPTER 3. A Tour of Machine Learning Classifiers Using scikit-learn 4. Building Good Training Datasets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Implementing a Multilayer Artificial Neural Network from Scratch 13. Parallelizing Neural Network Training with TensorFlow 14. Going Deeper – The Mechanics of TensorFlow 15. Classifying Images with Deep Convolutional Neural Networks 16. Modeling Sequential Data Using Recurrent Neural Networks 17. Generative Adversarial Networks for Synthesizing New Data 18. Reinforcement Learning for Decision Making in Complex Environments 19. Other Books You May Enjoy 20. Index

Adaptive linear neurons and the convergence of learning

In this section, we will take a look at another type of single-layer neural network (NN): ADAptive LInear NEuron (Adaline). Adaline was published by Bernard Widrow and his doctoral student Tedd Hoff only a few years after Rosenblatt's perceptron algorithm, and it can be considered an improvement on the latter (An Adaptive "Adaline" Neuron Using Chemical "Memistors", Technical Report Number 1553-2, B. Widrow and others, Stanford Electron Labs, Stanford, CA, October 1960).

The Adaline algorithm is particularly interesting because it illustrates the key concepts of defining and minimizing continuous cost functions. This lays the groundwork for understanding more advanced machine learning algorithms for classification, such as logistic regression, support vector machines, and regression models, which we will discuss in future chapters.

The key difference between the Adaline rule (also known as the Widrow...

You have been reading a chapter from
Python Machine Learning - Third Edition
Published in: Dec 2019
Publisher: Packt
ISBN-13: 9781789955750
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime