Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python High Performance, Second Edition

You're reading from   Python High Performance, Second Edition Build high-performing, concurrent, and distributed applications

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781787282896
Length 270 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dr. Gabriele Lanaro Dr. Gabriele Lanaro
Author Profile Icon Dr. Gabriele Lanaro
Dr. Gabriele Lanaro
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface Benchmarking and Profiling FREE CHAPTER Pure Python Optimizations Fast Array Operations with NumPy and Pandas C Performance with Cython Exploring Compilers Implementing Concurrency Parallel Processing Distributed Processing Designing for High Performance

Reaching optimal performance with numexpr

When handling complex expressions, NumPy stores intermediate results in memory. David M. Cooke wrote a package called numexpr, which optimizes and compiles array expressions on the fly. It works by optimizing the usage of the CPU cache and by taking advantage of multiple processors.

Its usage is generally straightforward and is based on a single function--numexpr.evaluate. The function takes a string containing an array expression as its first argument. The syntax is basically identical to that of NumPy. For example, we can calculate a simple a + b * c expression in the following way:

    a = np.random.rand(10000) 
b = np.random.rand(10000)
c = np.random.rand(10000)
d = ne.evaluate('a + b * c')

The numexpr package increases the performances in almost all cases, but to get a substantial advantage, you should use it with large arrays. An application...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image