Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Cleaning Cookbook

You're reading from   Python Data Cleaning Cookbook Modern techniques and Python tools to detect and remove dirty data and extract key insights

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781800565661
Length 436 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Michael B Walker Michael B Walker
Author Profile Icon Michael B Walker
Michael B Walker
Michael Walker Michael Walker
Author Profile Icon Michael Walker
Michael Walker
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Anticipating Data Cleaning Issues when Importing Tabular Data into pandas 2. Chapter 2: Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas FREE CHAPTER 3. Chapter 3: Taking the Measure of Your Data 4. Chapter 4: Identifying Missing Values and Outliers in Subsets of Data 5. Chapter 5: Using Visualizations for the Identification of Unexpected Values 6. Chapter 6: Cleaning and Exploring Data with Series Operations 7. Chapter 7: Fixing Messy Data when Aggregating 8. Chapter 8: Addressing Data Issues When Combining DataFrames 9. Chapter 9: Tidying and Reshaping Data 10. Chapter 10: User-Defined Functions and Classes to Automate Data Cleaning 11. Other Books You May Enjoy

Importing Excel files

The read_excel method of the pandas library can be used to import data from an Excel file and load it into memory as a pandas data frame. In this recipe, we import an Excel file and handle some common issues when working with Excel files: extraneous header and footer information, selecting specific columns, removing rows with no data, and connecting to particular sheets.

Despite the tabular structure of Excel, which invites the organization of data into rows and columns, spreadsheets are not datasets and do not require people to store data in that way. Even when some data conforms to those expectations, there is often additional information in rows or columns before or after the data to be imported. Data types are not always as clear as they are to the person who created the spreadsheet. This will be all too familiar to anyone who has ever battled with importing leading zeros. Moreover, Excel does not insist that all data in a column be of the same type, or...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image