Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python 3 Text Processing with NLTK 3 Cookbook

You're reading from   Python 3 Text Processing with NLTK 3 Cookbook

Arrow left icon
Product type Paperback
Published in Aug 2014
Publisher
ISBN-13 9781782167853
Length 304 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jacob Perkins Jacob Perkins
Author Profile Icon Jacob Perkins
Jacob Perkins
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Tokenizing Text and WordNet Basics FREE CHAPTER 2. Replacing and Correcting Words 3. Creating Custom Corpora 4. Part-of-speech Tagging 5. Extracting Chunks 6. Transforming Chunks and Trees 7. Text Classification 8. Distributed Processing and Handling Large Datasets 9. Parsing Specific Data Types A. Penn Treebank Part-of-speech Tags
Index

Classification-based chunking


Unlike most part-of-speech taggers, the ClassifierBasedTagger class learns from features. That means we can create a ClassifierChunker class that can learn from both the words and part-of-speech tags, instead of only the part-of-speech tags as the TagChunker class does.

How to do it...

For the ClassifierChunker class, we don't want to discard the words from the training sentences as we did in the previous recipe. Instead, to remain compatible with the 2-tuple (word, pos) format required for training a ClassiferBasedTagger class, we convert the (word, pos, iob) 3-tuples from tree2conlltags() into ((word, pos), iob) 2-tuples using the chunk_trees2train_chunks() function. This code can be found in chunkers.py:

from nltk.chunk import ChunkParserI
from nltk.chunk.util import tree2conlltags, conlltags2tree
from nltk.tag import ClassifierBasedTagger

def chunk_trees2train_chunks(chunk_sents):
  tag_sents = [tree2conlltags(sent) for sent in chunk_sents]
  return [[((w...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image