Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical C Programming

You're reading from   Practical C Programming Solutions for modern C developers to create efficient and well-structured programs

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781838641108
Length 616 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
B. M. Harwani B. M. Harwani
Author Profile Icon B. M. Harwani
B. M. Harwani
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Working with Arrays 2. Managing Strings FREE CHAPTER 3. Exploring Functions 4. Preprocessing and Compilation 5. Deep Dive into Pointers 6. File Handling 7. Implementing Concurrency 8. Networking and Inter-Process Communication 9. Sorting and Searching 10. Working with Graphs 11. Advanced Data Structures and Algorithms 12. Creativity with Graphics 13. Using MySQL Database 14. General-Purpose Utilities 15. Improving the Performance of Your Code 16. Low-Level Programming 17. Embedded Software and IoT 18. Applying Security in Coding 19. Other Books You May Enjoy

What is a pointer?

A pointer is a variable that contains the memory address of another variable, array, or string. When a pointer contains the address of something, it is said to be pointing at that thing. When a pointer points at something, it receives the right to access the content of that memory address. The question now is—why do we need pointers at all?

We need them because they do the following:

  • Facilitate the dynamic allocation of memory
  • Provide an alternative way to access a data type (apart from variable names, you can access the content of a variable through pointers)
  • Make it possible to return more than one value from a function

For example, consider an i integer variable:

int i;

When you define an integer variable, two bytes will be allocated to it in memory. This set of two bytes can be accessed by a memory address. The value assigned to the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image