Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with TensorFlow

You're reading from   Natural Language Processing with TensorFlow The definitive NLP book to implement the most sought-after machine learning models and tasks

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781838641351
Length 514 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Thushan Ganegedara Thushan Ganegedara
Author Profile Icon Thushan Ganegedara
Thushan Ganegedara
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Natural Language Processing FREE CHAPTER 2. Understanding TensorFlow 2 3. Word2vec – Learning Word Embeddings 4. Advanced Word Vector Algorithms 5. Sentence Classification with Convolutional Neural Networks 6. Recurrent Neural Networks 7. Understanding Long Short-Term Memory Networks 8. Applications of LSTM – Generating Text 9. Sequence-to-Sequence Learning – Neural Machine Translation 10. Transformers 11. Image Captioning with Transformers 12. Other Books You May Enjoy
13. Index
Appendix A: Mathematical Foundations and Advanced TensorFlow

Summary

In this chapter, you learned about LSTM networks. First, we discussed what an LSTM is and its high-level architecture. We also delved into the detailed computations that take place in an LSTM and discussed the computations through an example.

We saw that an LSTM is composed mainly of five different things:

  • Cell state: The internal cell state of an LSTM cell
  • Hidden state: The external hidden state used to calculate predictions
  • Input gate: This determines how much of the current input is read into the cell state
  • Forget gate: This determines how much of the previous cell state is sent into the current cell state
  • Output gate: This determines how much of the cell state is output into the hidden state

Having such a complex structure allows LSTMs to capture both short-term and long-term dependencies quite well.

We compared LSTMs to vanilla RNNs and saw that LSTMs are actually capable of learning long-term dependencies as an inherent...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image