Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with TensorFlow

You're reading from   Natural Language Processing with TensorFlow Teach language to machines using Python's deep learning library

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788478311
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Thushan Ganegedara Thushan Ganegedara
Author Profile Icon Thushan Ganegedara
Thushan Ganegedara
Motaz Saad Motaz Saad
Author Profile Icon Motaz Saad
Motaz Saad
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Natural Language Processing 2. Understanding TensorFlow FREE CHAPTER 3. Word2vec – Learning Word Embeddings 4. Advanced Word2vec 5. Sentence Classification with Convolutional Neural Networks 6. Recurrent Neural Networks 7. Long Short-Term Memory Networks 8. Applications of LSTM – Generating Text 9. Applications of LSTM – Image Caption Generation 10. Sequence-to-Sequence Learning – Neural Machine Translation 11. Current Trends and the Future of Natural Language Processing A. Mathematical Foundations and Advanced TensorFlow Index

Inputs, variables, outputs, and operations

Now with an understanding of the underlying architecture let's proceed to the most common elements that comprise a TensorFlow client. If you read any of the millions of TensorFlow clients available on the internet, they all (the TensorFlow-related code) fall into one of these buckets:

  • Inputs: Data used to train and test our algorithms
  • Variables: Mutable tensors, mostly defining the parameters of our algorithms
  • Outputs: Immutable tensors storing both terminal and intermediate outputs
  • Operations: Various transformations for inputs to produce the desired outputs

In our earlier example, in the sigmoid example, we can find instances of all these categories. We list the elements in Table 2.1:

TensorFlow element

Value from example client

Inputs

x

Variables

W and b

Outputs

h

Operations

tf.matmul(...), tf.nn.sigmoid(...)

The following subsections explain each of these TensorFlow elements in more detail.

Defining inputs in TensorFlow

The client...

You have been reading a chapter from
Natural Language Processing with TensorFlow
Published in: May 2018
Publisher: Packt
ISBN-13: 9781788478311
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image