Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models
Build solutions for real-world computer vision problems using PyTorch
All the code files are available on GitHub and can be run on Google Colab
Description
Whether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks.
The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion.
You’ll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You’ll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you’ll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you’ll learn best practices for deploying a model to production.
By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.
Who is this book for?
This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.
What you will learn
Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer
Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks
Implement multi-object detection and segmentation
Leverage foundation models to perform object detection and segmentation without any training data points
Learn best practices for moving a model to production
I bought this book because it claimed to dive deep into the working details of CNN. However there are very few mathematical details and the author jumps to technical details before explained the bigger ideas. Furthermore concept are used without proper definitions and examples are repeated endlessly.
Subscriber review
AbinayaOct 22, 2024
5
A valuable reference book for an AI engineer.Anyone who wants to do practise AI concepts , this book has the best guided exercises .Also the exercises are very close to industry problems.
Amazon Verified review
prassanna venkateshOct 21, 2024
5
The author does an excellent job of explaining complex concepts in a simple and engaging way. The step-by-step approach, combined with practical examples, makes it easy to follow along, even for someone without a deep background in AI or machine learning. The fundamental concepts like image processing, feature detection, and object recognition are broken down into digestible pieces, without assuming much prior knowledge. The book includes plenty of practical exercises, using Python, which helped me apply the theory immediately and the best part is the github link with all ready-to-run codes.
Amazon Verified review
Khawaja MuddassarOct 01, 2024
5
An insightful and comprehensive guide that not only demystifies modern computer vision techniques but also includes practical code examples for real-world implementation. A must-read for both beginners and seasoned professionals looking to stay ahead in the field!
Feefo Verified review
PookySep 10, 2024
2
I hate giving negative reviews but I’m not sure who this book is aimed at. The book mentions being a beginner, but they certainly assume a pretty advanced knowledge of Python in order to be able to follow the pages and pages of example code provided. Clearly, having all the examples is a good thing and with the aid of ChatGPT and regular internet searches further explanation of the code can be found (often I have to say better explanations than those given in the book itself). However I can only give two stars for my review as several of the examples fail to run (eg Class_activation_maps.ipynb just to give one example). This interrupts the learning process significantly. This second edition is a recent publication, and I would expect ALL the example code to be up to date and fully working. Unfortunately, it is not. In my view, this significantly impacts on the usefulness of the book. Quite frankly, I don’t understand why the authors can’t correct these errors as all they have to do is regularly run their code in Colab (as the reader would do) to check all is well and make any necessary corrections / updates. The text is also a little clunky in places, almost pidgin English, and could have done with better proof reading.
Kishore Ayyadevara is an entrepreneur and a hands-on leader working at the intersection of technology, data, and AI to identify and solve business problems. With over a decade of experience in leadership roles, Kishore has established and grown successful applied data science teams at American Express and Amazon, as well as a top health insurance company. In his current role, he is building a start-up focused on making AI more accessible to healthcare organizations. Outside of work, Kishore has shared his knowledge through his five books on ML/AI, is an inventor with 12 patents, and has been a speaker at multiple AI conferences.
Yeshwanth Reddy is a highly accomplished data scientist manager with 9+ years of experience in deep learning and document analysis. He has made significant contributions to the field, including building software for end-to-end document digitization, resulting in substantial cost savings. Yeshwanth's expertise extends to developing modules in OCR, word detection, and synthetic document generation. His groundbreaking work has been recognized through multiple patents. He has also created a few Python libraries. With a passion for disrupting unsupervised and self-supervised learning, Yeshwanth is dedicated to reducing reliance on manual annotation and driving innovative solutions in the field of data science.
Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.
If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.
Please Note: Packt eBooks are non-returnable and non-refundable.
Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:
You may make copies of your eBook for your own use onto any machine
You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website?
If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:
Register on our website using your email address and the password.
Search for the title by name or ISBN using the search option.
Select the title you want to purchase.
Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title.
Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook?
If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
To view your account details or to download a new copy of the book go to www.packtpub.com/account
Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.
You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.
What are the benefits of eBooks?
You can get the information you need immediately
You can easily take them with you on a laptop
You can download them an unlimited number of times
You can print them out
They are copy-paste enabled
They are searchable
There is no password protection
They are lower price than print
They save resources and space
What is an eBook?
Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.
When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.
For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.