The architecture and components of a BI system
After understanding what the BI system is, it's time to discover more about its components and understand how these components work with each other. There are also some BI tools that help to implement one or more components. The following diagram shows an illustration of the architecture and main components of the Business Intelligence system:
The BI architecture and components differ based on the tools, environment, and so on. The architecture shown in the preceding diagram contains components that are common in most of the BI systems. In the following sections, you will learn more about each component.
The data warehouse
The data warehouse is the core of the BI system. A data warehouse is a database built for the purpose of data analysis and reporting. This purpose changes the design of this database as well. As you know, operational databases are built on normalization standards, which are efficient for transactional systems, for example, to reduce redundancy. As you probably know, a 3NF-designed database for a sales system contains many tables related to each other. So, for example, a report on sales information may consume more than 10 joined conditions, which slows down the response time of the query and report. A data warehouse comes with a new design that reduces the response time and increases the performance of queries for reports and analytics. You will learn more about the design of a data warehouse (which is called dimensional modeling) later in this chapter.
Extract Transform Load
It is very likely that more than one system acts as the source of data required for the BI system. So there is a requirement for data consolidation that extracts data from different sources and transforms it into the shape that fits into the data warehouse, and finally, loads it into the data warehouse; this process is called Extract Transform Load (ETL). There are many challenges in the ETL process, out of which some will be revealed (conceptually) later in this chapter.
According to the definition of states, ETL is not just a data integration phase. Let's discover more about it with an example; in an operational sales database, you may have dozen of tables that provide sale transactional data. When you design that sales data into your data warehouse, you can denormalize it and build one or two tables for it. So, the ETL process should extract data from the sales database and transform it (combine, match, and so on) to fit it into the model of data warehouse tables.
There are some ETL tools in the market that perform the extract, transform, and load operations. The Microsoft solution for ETL is SQL Server Integration Service (SSIS), which is one of the best ETL tools in the market. SSIS can connect to multiple data sources such as Oracle, DB2, Text Files, XML, Web services, SQL Server, and so on. SSIS also has many built-in transformations to transform the data as required. Chapter 4, ETL with Integration Services, is about SSIS and how to do data transformations with this tool.
Data model – BISM
A data warehouse is designed to be the source of analysis and reports, so it works much faster than operational systems for producing reports. However, a DW is not that fast to cover all requirements because it is still a relational database, and databases have many constraints that reduce the response time of a query. The requirement for faster processing and a lower response time on one hand, and aggregated information on another hand causes the creation of another layer in BI systems. This layer, which we call the data model, contains a file-based or memory-based model of the data for producing very quick responses to reports.
Microsoft's solution for the data model is split into two technologies: the OLAP cube and the In-memory tabular model. The OLAP cube is a file-based data storage that loads data from a data warehouse into a cube model. The cube contains descriptive information as dimensions (for example, customer and product) and cells (for example, facts and measures, such as sales and discount). The following diagram shows a sample OLAP cube:
In the preceding diagram, the illustrated cube has three dimensions: Product, Customer, and Time. Each cell in the cube shows a junction of these three dimensions. For example, if we store the sales amount in each cell, then the green cell shows that Devin paid 23$ for a Hat on June 5. Aggregated data can be fetched easily as well within the cube structure. For example, the orange set of cells shows how much Mark paid on June 1 for all products. As you can see, the cube structure makes it easier and faster to access the required information.
Microsoft SQL Server Analysis Services 2012 comes with two different types of modeling: multidimensional and tabular. Multidimensional modeling is based on the OLAP cube and is fitted with measures and dimensions, as you can see in the preceding diagram. The tabular model is based on a new In-memory engine for tables. The In-memory engine loads all data rows from tables into the memory and responds to queries directly from the memory. This is very fast in terms of the response time. You will learn more about SSAS Multidimensional in Chapter 2, SQL Server Analysis Services Multidimensional Cube Development, and about SSAS Tabular in Chapter 3, Tabular Development of SQL Server Analysis Services, of this book. The BI semantic model (BISM) provided by Microsoft is a combination of SSAS Tabular and Multidimensional solutions.
Data visualization
The frontend of a BI system is data visualization. In other words, data visualization is a part of the BI system that users can see. There are different methods for visualizing information, such as strategic and tactical dashboards, Key Performance Indicators (KPIs), and detailed or consolidated reports. As you probably know, there are many reporting and visualizing tools on the market.
Microsoft has provided a set of visualization tools to cover dashboards, KPIs, scorecards, and reports required in a BI application. PerformancePoint, as part of Microsoft SharePoint, is a dashboard tool that performs best when connected to SSAS Multidimensional OLAP cube. You will learn about PerformancePoint in Chapter 10, Dashboard Design. Microsoft's SQL Server Reporting Services (SSRS) is a great reporting tool for creating detailed and consolidated reports. SSRS is a mature technology in this area, which will be revealed in Chapter 9, Reporting Services. Excel is also a great slicing and dicing tool especially for power users. There are also components in Excel such as Power View, which are designed to build performance dashboards. You will learn more about Power View in Chapter 9, Reporting Services, and about Power BI features of Excel 2013 in Chapter 11, Power BI. Sometimes, you will need to embed reports and dashboards in your custom written application. Chapter 12, Integrating Reports in Application, of this book explains that in detail.
Master Data Management
Every organization has a part of its business that is common between different systems. That part of the data in the business can be managed and maintained as master data. For example, an organization may receive customer information from an online web application form or from a retail store's spreadsheets, or based on a web service provided by other vendors.
Master Data Management (MDM) is the process of maintaining the single version of truth for master data entities through multiple systems. Microsoft's solution for MDM is Master Data Services (MDS). Master data can be stored in the MDS entities and it can be maintained and changed through the MDS Web UI or Excel UI. Other systems such as CRM, AX, and even DW can be subscribers of the master data entities. Even if one or more systems are able to change the master data, they can write back their changes into MDS through the staging architecture. You will learn more about MDS in Chapter 5, Master Data Management.
Data Quality Services
The quality of data is different in each operational system, especially when we deal with legacy systems or systems that have a high dependence on user inputs. As the BI system is based on data, the better the quality of data, the better the output of the BI solution. Because of this fact, working on data quality is one of the components of the BI systems. As an example, Auckland might be written as "Auck land" in some Excel files or be typed as "Aukland" by the user in the input form.
As a solution to improve the quality of data, Microsoft provided users with DQS. DQS works based on Knowledge Base domains, which means a Knowledge Base can be created for different domains, and the Knowledge Base will be maintained and improved by a data steward as time passes. There are also matching policies that can be used to apply standardization on the data. You will learn more about DQS in Chapter 6, Data Quality and Data Cleansing.