Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering spaCy

You're reading from   Mastering spaCy An end-to-end practical guide to implementing NLP applications using the Python ecosystem

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800563353
Length 356 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Duygu Altınok Duygu Altınok
Author Profile Icon Duygu Altınok
Duygu Altınok
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Getting Started with spaCy
2. Chapter 1: Getting Started with spaCy FREE CHAPTER 3. Chapter 2: Core Operations with spaCy 4. Section 2: spaCy Features
5. Chapter 3: Linguistic Features 6. Chapter 4: Rule-Based Matching 7. Chapter 5: Working with Word Vectors and Semantic Similarity 8. Chapter 6: Putting Everything Together: Semantic Parsing with spaCy 9. Section 3: Machine Learning with spaCy
10. Chapter 7: Customizing spaCy Models 11. Chapter 8: Text Classification with spaCy 12. Chapter 9: spaCy and Transformers 13. Chapter 10: Putting Everything Together: Designing Your Chatbot with spaCy 14. Other Books You May Enjoy

Understanding lemmatization

A lemma is the base form of a token. You can think of a lemma as the form in which the token appears in a dictionary. For instance, the lemma of eating is eat; the lemma of eats is eat; ate similarly maps to eat. Lemmatization is the process of reducing the word forms to their lemmas. The following code is a quick example of how to do lemmatization with spaCy:

 import spacy
 nlp = spacy.load("en_core_web_md")
 doc = nlp("I went there for working and worked for 3 years.")
 for token in doc:
     print(token.text, token.lemma_)
I -PRON-
went go
there
for for
working work
and and
worked work
for for
3 3
years year
. .

By now, you should be familiar with what the first three lines of the code do. Recall that we import the spacy library, load an English model using spacy.load, create a pipeline, and apply the pipeline to the preceding sentence to get a Doc object. Here we iterated over tokens to get their text and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime