Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Mastering RStudio: Develop, Communicate, and Collaborate with R
Mastering RStudio: Develop, Communicate, and Collaborate with R

Mastering RStudio: Develop, Communicate, and Collaborate with R: Harness the power of RStudio to create web applications, R packages, markdown reports and pretty data visualizations

Arrow left icon
Profile Icon Julian Hillebrand Profile Icon Nierhoff
Arrow right icon
$54.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5 (6 Ratings)
Paperback Dec 2015 348 pages 1st Edition
eBook
$29.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Julian Hillebrand Profile Icon Nierhoff
Arrow right icon
$54.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5 (6 Ratings)
Paperback Dec 2015 348 pages 1st Edition
eBook
$29.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$29.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Mastering RStudio: Develop, Communicate, and Collaborate with R

Chapter 1. The RStudio IDE – an Overview

The number of users adopting the R programming language has been increasing faster and faster in the last few years. It is not just used for smaller analyses, but also for bigger projects, and often, several people collaborating on the same project. The functions of the R console are limited when it comes to managing a lot of files, or when we want to work with version control systems. This is the reason, in combination with the increasing adoption rate, why a need for a better development environment arose. To serve this need, a team of R fans began to develop an integrated development environment (IDE) to make it easier to work on bigger projects and to collaborate with others. This IDE has the name, RStudio. We will introduce you to this fantastic software and show you how to take your R programming to the next level. Mastering the use of RStudio will help you solve real-world problems faster and more effectively.

In this chapter, we will introduce you to the RStudio interface and build the foundation for more advanced topics in the following chapters.

This chapter covers the following topics:

  • Downloading and installing RStudio
  • Getting to know the RStudio interface
  • Working with RStudio projects

Downloading and installing RStudio

Before installing RStudio, you should install R on your computer. RStudio will then automatically search for your R installation.

Installing R

RStudio is based on the R framework and it requires, at least, R version 2.11.1, but we highly recommend that you install the latest version. The latest version of R is 3.2.2, as of September 2015.

We assume that most readers are using Windows or Mac OS systems. The installation of R is pretty simple. Just go to http://cran.rstudio.com, download the proper version of R for your system, and install it using the default setting.

We would like to leave more space to talk about installing R on different Linux distributions. As there are a huge number of different Linux distributions out there, we will focus, in this book, on the most used one: Ubuntu.

For Ubuntu

CRAN hosts repositories for Debian and Ubuntu. To install the latest version of R, you should add the CRAN repository to your system.

The supported releases are: Utopic Unicorn (14.10), Trusty Tahr (14.04; LTS), Precise Pangolin (12.04; LTS), and Lucid Lynx (10.04; LTS). However, only the latest Long Term Support (LTS) is fully supported by the R framework development team.

We will take Ubuntu 14.04 LTS as an example. Perform the following steps:

  1. Open a new terminal window.
  2. Add the repository for Ubuntu 14.04 to the file /etc/apt/sources.list:
    $ sudo sh –c "echo 'deb http://cran.rstudio.com/bin/linux/ubuntu trusty/'>>/etc/apt/sources.list
    
  3. The Ubuntu archives on CRAN are signed with a key, which has the key ID, E084DAB9. So, we have to add the key to our system:
    $ sudo apt-key adv –keyserver keyserver.ubuntu.com –recv-keys E084DAB9
    
  4. Update the system and repository:
    $ sudo apt-get update
    
  5. Install R with:
    $ sudo apt-get install r-base
    
  6. Install the developer package:
    $ sudo apt-get install r-base-devInstalling RStudio
    

Installing RStudio on Windows and Ubuntu is pretty much the same, as RStudio offers installers for nearly all platforms. The steps are listed as follows:

  1. Go to http://www.rstudio.com/products/rstudio/download/.
  2. Download the newest installer for your system.
  3. Install RStudio using the default settings.

Using RStudio with different versions of R

As R updates continuously, it is possible that you have, even after a short time, several versions of R installed on your system. Sometimes, you also have projects that require an older version of R to run properly.

Windows

When R is installed on Windows, it automatically writes the version being installed into the registry as the current version of R. And this will also be the version that RStudio uses. You can choose the version of R that you want to use by holding the Ctrl key during the launch of RStudio.

Ubuntu

On Linux, you can use a command with R to see which version of R, RStudio uses. If you want RStudio to use another version of R (maybe you want to use an older version or because you had to install R in your Documents folder because of missing admin rights) you can overwrite the settings with the following export: RSTUDIO_WHICH_R=/usr/local/bin/R. This line has to be added to your ~/.profile file.

Updating RStudio

Updating RStudio is as easy as installing it. If you want to check if an update is available, navigate to Help | Check for Updates.

If an update is available, you can download the newest version and just install it. As RStudio saves all user information in the user's home directory, they will still be there after the update.

Getting to know the RStudio interface

Now, we can take a look at RStudio's user interface.

Getting to know the RStudio interface

The four main panes

When you start RStudio for the first time, you will see four main panes. If you want to customize the four main panes, you can do it by navigating to Tools | Global Options | Pane Layout.

We will explain their use, but first we need to create a new R script file by clicking on File | New File | R Script.

The four main panes

The new R script file is opened in a new pane and is named Untitled1.

The four main panes

You can see that we now have four panes. They are named as follows:

  • The Source editor pane
  • The Environment and History pane
  • The Console pane
  • The Files, Plots, Packages, Help, and Viewer pane

The Source editor pane

RStudio's source editor was developed in a fully functional R editor over the last few years. It has a powerful syntax highlighter that works with not only every format connected to R development, such as R Scripts, R Markdown, or R documentation files, but also C++, JavaScript, HTML, and many more.

We've already created a new R script file and can now demonstrate some of the code editor's functions. You can also open an existing R document by clicking on File | Open File, or by using the shortcut, Ctrl + O.

The code editor works with tabs, which gives you the possibility of opening several files at the same time, as you can see in the following screenshot. If there are unsaved changes in a file, their names will be highlighted in red and marked with an asterisk.

The Source editor pane

If you have several files opened, you will see a double arrow in the menu of the source code editor. This will open a small menu showing you an overview of all the opened files. You can also search for a specific file.

The Source editor pane

Under the tabs with the opened files, you can see a toolbox with tools for the code editor. For example, you have the Source on Save checkbox. This is a really handy tool especially when you are working on a reusable function. If activated, the function is automatically sourced to the global environment and we do not have to source it manually again after editing the code.

Another function you can find in the toolbox is the search and replace tool. This is known from a lot of text editors and helps you find existing code and replace it. RStudio also offers different options for your search, such as In selection, to just search in the code you selected in the editor or Match case, to make the search case-sensitive. This is demonstrated in the following screenshot:

The Source editor pane

Syntax highlighting

RStudio highlights parts of your code according to the R language definition. This makes your code much easier to read. The default settings are:

  • The R keywords being blue
  • The text strings being green
  • Numbers being dark blue
  • Comments being dull green

Code completion

One of the most important menus in the source editor is what you find when you click on the magic stick. If you forgot what exact arguments the selected function needs, just hit the Tab button and you will see a list of available arguments with a description, if available:

Code completion

You can then scroll through the list and select the argument you want to use. This is especially useful when you have functions that can be called with a lot of different arguments; it would be very time-consuming to open the package documentation for every function call.

Code completion

You can also find direct links to the help or function definition, which shows you where the current function is defined.

After that, you can find the functions, Extract Function and Extract Variable. These functions help you in creating functions. When you click on Extract Function or use the shortcut, Ctrl + Alt + X, RStudio creates a function from your selection and inserts it in the source code.

Code completion

After executing the command, your code will look like this:

Code completion

The next button is the Compile Notebook button. This helps you compile your currently opened source file into a notebook with the format, HTML, PDF, or MS Word:

Code completion

The compiled report will then open in a new window.

Code completion

This is the code we used for the preceding example; if you want to reproduce it, type the following code:

x <- 10 + (1:20)/10
y <- x^2 + rnorm(length(x))
plot(x, y)

Executing R Code from the source pane

On the extreme right of the source code menu, you will find the buttons needed to run the code. These buttons are:

  • The Run button executes a single line and the shortcut is Ctrl + Enter
  • To re-run the previous region (Ctrl + Shift + P)
  • The Source button executes the entire source file (Ctrl + Shift + Enter)

Tip

Code regions are foldable regions of code in the code editor. We will explain later how you can create them.

If you want to execute a single line, or rather, if you want to run the current line where your cursor is, you can use the Run button or the shortcut, Ctrl + Enter. After the execution, the cursor will jump to the next line in the source file.

If you want to execute several lines of code, you can select the lines and press the Run button.

Code folding

RStudio supports both automatic and user-defined folding for regions of code. This is a very handy feature, especially when you work with functions and larger scripts. It lets you hide and show blocks to make the code easier to navigate.

RStudio automatically folds the following regions in the source editor:

  • Braced regions (function definitions, conditional blocks, and so on)
  • Code chunks within R Sweave or R Markdown documents
  • Code sections (user-defined)

The output looks like this:

Code folding

To define a code section on your own and to make it easier to navigate in larger source files, you can use three methods:

  • # Section One ----------------------
  • # Section Two =============
  • ### Section Three #############

So, the line can start with any number of pound signs (#), but is has to end with at least four or more -, =, or # characters. RStudio then automatically defines the following code as the section. To navigate between code sections, you can use the Jump To menu at the bottom of the editor.

Code folding

The menu at the bottom, on the right-hand side lets you choose the file format of the currently opened source file. Normally, RStudio chooses the right format automatically. If you change it manually, the code completion and the syntax highlighting will adapt to the new settings.

Code folding

Debugging code

RStudio offers visual debuggers to help you understand code and find bugs and problems. Therefore, it uses the debugging functions of R but integrates them seamlessly into the RStudio user interface. You can find these tools in the Debug tab of the menu, or by pressing Alt + D:

Debugging code

You can set breakpoints right in the source editor by clicking on the number of the line, or by pressing Shift + F9:

Debugging code

The debugger output can help you find bugs in your code in a better way. In this example, the debugger output is debug.R:10. This means that we should look into the tenth line of the source file:

Debugging code

The Environment and History panes

With the default settings, this pane consists of the tabs, Environment and History. You can use the shortcut, Ctrl + 8, to switch to the Environment browser, and Ctrl + 4 to switch to the History window:

The Environment and History panes

The Environment pane is one of the biggest advantages of RStudio. It gives you an overview over all objects currently available in an environment. So, you can see a list of all data, values, and functions.

The Environment browser shows you the number of observations and the number of variables in the second column. If you want to get a better overview of a dataset, you can click on the table symbol at the end of the row.

The Environment and History panes

When you click on the blue and white arrow next to the name of an object, you will see its structure. This is basically the output of the str() function, but in a more structured way.

The Import Dataset button offers you an easy way to import data. It basically uses the read.csv() function but offers you a graphical interface to set the parameters for the import. You can either import the dataset from a local file, or you can choose an import from a URL.

The Environment and History panes

Furthermore, the Environment pane gives you the possibility of clearing the environment, which will delete all defined variables and also all sourced functions.

History pane

The History pane shows all the commands you entered in the console, and it also lets you send the selected command back from the history directly to the console with the To Console button or back to the opened source code file with the To Source button. You can also delete commands from the history by selecting them and pressing the paper icon with the red close sign above the history. Or you can clear the whole history by clicking the broom icon:

History pane

Console pane

The console pane is basically an R console but it is enhanced with some RStudio functions. This includes the command completion known from the source editor, and a history popup, which shows you the recent commands you used.

The keyboard shortcuts for the console pane are:

  • Command completion: Tab
  • Command history popup: Ctrl + arrow up
  • Clear console: Ctrl + L
  • Go through historical command: arrow up

The Files, Plots, Packages, Help, and Viewer panes

This pane is, like the name says, divided into five sub panes: Files, Plots, Packages, Help, and Viewer.

The Files pane

This pane is one of RStudio's biggest enhancements in comparison to the normal R console. The Files pane shows you all the files in the current working directory. It includes information about the file size and when the data was last modified. Clicking on an item will open it with the appropriate application.

The Files pane

The Plot pane

The Plot pane in RStudio handles all of your graphics output. This makes working with graphical output much easier than in the regular R console, as it opens a new window for every graphic.

The Plot pane

Furthermore, the Plot pane gives some more tools. These tools include the option to zoom into a graphic. This will open a new window with a bigger version of the current plot. This plot will then arrange itself to the current window size.

You can also export the current plotted graphic with the Export button. The Export menu has three options:

  • To save the plot as an image
  • To save the plot as a PDF
  • To copy the plot to the clipboard
The Plot pane

When you choose the Save as Image... option, RStudio will open a popup that lets you define the export image format, the directory, and the file name, as well as the width and height.

The Plot pane

The Save as PDF... option will create a single page PDF document with your plot. Based on the width and height settings, it will be either in the landscape or portrait format.

RStudio also offers the option to publish your plots on RPubs. This is a free and very simple web service from the makers of RStudio to upload R graphics and R Markdown documents, which will then be publicly available on the web and you can share the link. We will talk about the possibilities of R markdown in a later chapter.

When you click on the Publish button, a window will open and guide you through the process.

The Plot pane

After clicking on Publish, a new browser window will open and show your uploaded report:

The Plot pane

The Packages pane

The Package pane helps you install, update, or load packages. It gives you an overview about all installed packages, a short description, and the installed version.

If you tick a checkbox in front of a package, it will automatically be loaded, and if you remove the tick again, RStudio will automatically detach it from the environment. So, it basically unloads it again.

The Packages pane also provides a handy tool to install new packages with the help of a graphical interface. We just have to click on the Install button and we will be guided through the installation process. The Install packages dialog also allows us to install packages that we have saved locally on our computer:

The Packages pane

You can see next what RStudio does in the R console:

The Packages pane

The Help pane

A big advantage of the R language is that every package on CRAN will come with package documentation. You can find these files on the CRAN website but RStudio bundles them in a handy Help pane. You can search the help through the search bar, or you can just press F1:

The Help pane

The Viewer pane

The Viewer pane in RStudio can be used to view local web content, such as web graphics created with packages such as rCharts, googleVis, and others. It can also show local web applications created with Shiny or OpenCPU.

The Viewer pane

Now, we will click on Save as Web Page... in the Export menu.

The Viewer pane

The export menu of the viewer pane offers, basically, the same option to export your work but replaces the Save as image option with Save as Web Page. This creates a standalone web page.

Customizing RStudio

The default options of RStudio are the best for most people, but you can also change the appearance and the pane layout completely according to your needs and wishes. We can open the Options menu by clicking on Tools | Global Options:

Customizing RStudio

RStudio offers a lot of ways to personalize the code editing. We can, for example, set the spaces that will be inserted when we use the Tab key, or change the diagnostics information shown. You also have the Appearance tab, as shown next:

Customizing RStudio

Here you can edit, for example, the font used in the code editor, or the editor theme. This way, you can make RStudio look the way you want it to.

And the Pane Layout tab: In this pane, we can change the content of the four main panes in the Pane Layout tab. You can make each of them a source, a console, or an individualized pane. So, the last option means that you can easily add elements to the pane with the help of the checkboxes.

Customizing RStudio

Using keyboard shortcuts

The fastest way to use RStudio is by using it with keyboard shortcuts. In the previous text, we already mentioned some of them. But we put the most important ones together in a table, which is as follows:

Description

Windows and Linux

Mac

Move the focus to the Source editor

Ctrl + 1

Ctrl + 1

Move the focus to console

Ctrl + 2

Ctrl + 2

Move the focus to Help

Ctrl + 3

Ctrl + 3

Show the History pane

Ctrl + 4

Ctrl +4

Show the Files pane

Ctrl + 5

Ctrl +5

Show the Plots pane

Ctrl + 6

Ctrl + 6

Show the Packages pane

Ctrl + 7

Ctrl + 7

Show the Environment pane

Ctrl + 8

Ctrl + 8

Open the document

Ctrl + O

Command + O

Run the current line/section

Ctrl + Enter

Command + Enter

Clear the console

Ctrl + L

Command + L

Extract the function from the selection

Ctrl + Alt + X

Command + Option + X

Source the current document

Ctrl + Shift + Enter

Command + Shift + Enter

Toggle the breakpoint

Shift + F9

Shift + F9

Working with RStudio and projects

In the times before RStudio, it was very hard to manage bigger projects with R in the R console, as you had to create all the folder structures on your own.

When you work with projects or open a project, RStudio will instantly take several actions. For example, it will start a new and clean R session, it will source the .Rprofile file in the project's main directory, and it will set the current working directory to the project directory. So, you have a complete working environment individually for every project. RStudio will even adjust its own settings, such as active tabs, splitter positions, and so on, to where they were when the project was closed.

But just because you can create projects with RStudio easily, it does not mean that you should create a project for every single time that you write R code. For example, if you just want to do a small analysis, we would recommend that you create a project where you save all your smaller scripts.

Creating a project with RStudio

RStudio offers you an easy way to create projects. Just navigate to File | New Project and you will see a popup window with the following options:

  • New Directory
  • Existing Directory
  • Version Control
Creating a project with RStudio

These options let you decide from where you want to create your project. So, if you want to start it from scratch and create a new directory, associate your new project to an existing one, or if you want to create a project from a version control repository, you can avail of the respective options. For now, we will focus on creating a new directory.

The following list will show you the next options available:

  • Empty Project
  • R Package
  • Shiny Web Application
Creating a project with RStudio

We will look in the categories, R Package and Shiny Web Application later in this book, so for now we will concentrate on the Empty Project option.

Locating your project

A very important question you have to ask yourself when creating a new project is where you want to save it? There are several options and details you have to pay attention to especially when it comes to collaboration and different people working on the same project.

You can save your project locally, on a cloud storage or with the help of a revision control system such as Git.

Using RStudio with Dropbox

An easy way to store your project and to be able to access it from everywhere is the use of a cloud storage provider like Dropbox. It offers you a free account with 2 GB of storage, which should be enough for your first project.

Preventing Dropbox synchronization conflicts

RStudio actively monitors your project files for changes, which allows it to index functions and files to enable code completion and navigation. But when you use Dropbox at the same time to remotely sync your work, it will also monitor your files and this can cause conflicts. So you should tell Dropbox to ignore the .Rproj.user directory in your RStudio project.

To ignore a file in Dropbox, navigate to Preferences | Account | Selective Sync and uncheck the .Rproj.user directory.

Dropbox also helps you with version control, as it keeps previous versions of a file.

Preventing Dropbox synchronization conflicts

Creating your first project

To begin your first project, choose the New Directory option we described before and create an empty project. Then, choose a name for the directory and the location that you want to save it in. You should create a projects folder on your Dropbox.

The first project will be a small data analysis based on a dataset that was extracted from the 1974 issue of the Motor Trend US magazine. It comprises fuel consumption and ten aspects of automobile design and performance, such as the weight or number of cylinders for 32 automobiles, and is included in the base R package. So, we do not have to install a separate package to work with this dataset, as it is automatically loaded when you start R.

Creating your first project

As you can see, we left the Use packrat with this project option unchecked. Packrat is a dependency management tool that makes your R code more isolated, portable, and reproducible by giving your project its own privately managed package library. This is especially important when you want to create projects in an organizational context where the code has to run on various computer systems, and has to be usable for a lot of different users. This first project will just run locally and will not focus on a specific combination of package versions.

Organizing your folders

RStudio creates an empty directory for you that includes just the file, Motor-Car-Trend-Analysis.Rproj. This file will store all the information on your project that RStudio will need for loading. But to stay organized, we have to create some folders in the directory. Create the following folders:

  • data: This includes all the data that we need for our analysis
  • code: This includes all the code files for cleaning up data, generating plots, and so on
  • plots: This includes all graphical outputs
  • reports: This comprises all the reports that we create from our dataset
Organizing your folders

This is a very basic folder structure and you have to adapt it to your needs in your own projects. You could, for example, add the folders, raw and processed, in the data folder. Raw for unstructured data that you started with, and processed for cleaned data that you actually used for your analysis.

Saving the data

The Motor Trend Car Road Tests dataset is part of the dataset package, which is one of the preinstalled packages in R. But, we will save the data in a CSV file in our data folder, after extracting the data from the mtcars variable, to make sure our analysis is reproducible:

#write data into csv file
write.csv(mtcars, file = "data/cars.csv", row.names=FALSE)

Put the previous line of code in a new R script and save it as data.R in the code folder.

Analyzing the data

The analysis script will first have to load the data from the CSV file with the following line:

cars_data <- read.csv(file = "data/cars.csv", header = TRUE, sep = ",")

Correcting the path for report exporting

If you want to create a report from your R script, you have to specify the relative path to the data file, beginning with two dots:

cars_data <- read.csv(file = "../data/cars.csv", header = TRUE, sep = ",")

Next, we can take a look at the different variables and see if we can find any correlations on the first look. We can create a pairs matrix with the following line:

pairs(cars_data)

We can then save the created matrix with the export function of the Plots Pane option. Then, we can save it as an image in the plots folder:

Correcting the path for report exporting

As you can see, we can expect a lot of different variable combinations, which could correlate very well. The most obvious one is surely weight of the car (wt) and Miles per Gallon (mpg): a heavy car seems to need more gallons of fuel than a lighter car.

We can now test this hypothesis by calculating the correlation and plotting a scatterplot of these two variables. In addition, we can also do a linear regression and see how it performs:

cor(cars_data$wt, cars_data$mpg)


install.packages("ggplot2")
require(ggplot2)

ggplot(cars_data, aes(x=wt, y=mpg))+
  geom_point(aes(shape=factor(am, labels = c("Manual","Automatic"))))+
  geom_smooth(method=lm)+scale_shape_discrete(name = "Transmission Type")

firstModel <- lm(mpg~wt, data = cars_data)
Correcting the path for report exporting

We can see more details with:

summary(firstModel)$coef

[1] -0.8676594

print(c('R-squared', round(summary(firstModel)$r.sq,2)))

[1] "R-squared"  "0.75"

We can see that there is a high negative correlation between these two variables, and the first model is a pretty good fit with an R-squared value of 0.75.

But we also have to test other combinations and see how they perform. And what we basically do is test all the correlations and use the best model.

We will not explain the statistical functions behind this approach, as it would be out of the scope of this chapter:

#Test other correlations
completeModel <- lm(mpg ~., data=cars_data)
stepSolution <- step(completeModel, direction = "backward")

#get the best model
bestModel <- stepSolution$call
bestModel

The output will look like this:

Correcting the path for report exporting

The best model now has the following formula:

mpg ~ wt + qsec + am 

So, we will create a final model with this formula and see how it performs:

finalModel <- lm(mpg~wt + factor(am) + qsec, data = cars_data)
summary(finalModel)$coef
print(c('R-squared', round(summary(finalModel)$r.sq,2)))
Correcting the path for report exporting
 [1] "R-squared"  "0.85"

As we can see, the final model also includes the variable, qsec, which is the time the car needs for a quarter mile, and am, which is the type of transmission (automatic or manual).

But, we can also see that just the transmission type, manual, seems to play a significant role when it comes to mileage.

After you execute the analysis script, you can see that all your results are still in RStudio, which is a big advantage in contrast to the R console.

So, you can go through all the graphs you produced in the plot viewer with the arrows.

Correcting the path for report exporting

Or, you can see which variables are set in the environment. These are all the models you calculated in this analysis, as well as in your initial dataset.

Correcting the path for report exporting

You can click on the table icon behind cars_data in the Environment pane to open the data frame in the Source pane.

Correcting the path for report exporting

Exporting your analysis as a report

You can also export the analysis.R script as a report in the HTML, PDF, or MS Word format, and you will then find the report in your code folder. Therefore, just click on the Publish button and RStudio will guide you through the process.

Exporting your analysis as a report

Summary

In this chapter, we learned how to install RStudio and got a general overview of its user interface. This consists of four main panes: the Source Editor pane, the console pane, the Environment and Help pane, and the Files, Plot, Help, and Viewer pane. We learned their different functions and saw what tools each pane has.

Furthermore, we learned how to create a project with RStudio in combination with Dropbox, and we started our first small data analysis.

In the next chapter, we will learn how to communicate our work with the help of R Markdown, and how to create reproducible research.

Left arrow icon Right arrow icon

Key benefits

  • Discover the multi-functional use of RStudio to support your daily work with R code
  • Learn to create stunning, meaningful, and interactive graphs and learn to embed them into easy communicable reports using multiple R packages
  • Develop your own R packages and Shiny web apps to share your knowledge and collaborate with others.

Description

RStudio helps you to manage small to large projects by giving you a multi-functional integrated development environment, combined with the power and flexibility of the R programming language, which is becoming the bridge language of data science for developers and analyst worldwide. Mastering the use of RStudio will help you to solve real-world data problems. This book begins by guiding you through the installation of RStudio and explaining the user interface step by step. From there, the next logical step is to use this knowledge to improve your data analysis workflow. We will do this by building up our toolbox to create interactive reports and graphs or even web applications with Shiny. To collaborate with others, we will explore how to use Git and GitHub and how to build your own packages to ensure top quality results. Finally, we put it all together in an interactive dashboard written with R.

Who is this book for?

This book is aimed at R developers and analysts who wish to do R statistical development while taking advantage of RStudio's functionality to ease their development efforts. R programming experience is assumed as well as being comfortable with R's basic structures and a number of functions.

What you will learn

  • Discover the RStudio IDE and details about the user interface
  • Communicate your insights with R Markdown in static and interactive ways
  • Learn how to use different graphic systems to visualize your data
  • Build interactive web applications with the Shiny framework to present and share your results
  • Understand the process of package development and assemble your own R packages
  • Easily collaborate with other people on your projects by using Git and GitHub
  • Manage the R environment for your organization with Shiny server
  • Apply your obtained knowledge of R development to create a real-world dashboard solution
Estimated delivery fee Deliver to United States

Economy delivery 10 - 13 business days

Free $6.95

Premium delivery 6 - 9 business days

$21.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 04, 2015
Length: 348 pages
Edition : 1st
Language : English
ISBN-13 : 9781783982547
Category :
Languages :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Estimated delivery fee Deliver to United States

Economy delivery 10 - 13 business days

Free $6.95

Premium delivery 6 - 9 business days

$21.95
(Includes tracking information)

Product Details

Publication date : Dec 04, 2015
Length: 348 pages
Edition : 1st
Language : English
ISBN-13 : 9781783982547
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 137.97
Mastering RStudio: Develop, Communicate, and Collaborate with R
$54.99
Learning Bayesian Models with R
$38.99
Learning Shiny
$43.99
Total $ 137.97 Stars icon

Table of Contents

11 Chapters
1. The RStudio IDE – an Overview Chevron down icon Chevron up icon
2. Communicating Your Work with R Markdown Chevron down icon Chevron up icon
3. R Lesson I – Graphics System Chevron down icon Chevron up icon
4. Shiny – a Web-app Framework for R Chevron down icon Chevron up icon
5. Interactive Documents with R Markdown Chevron down icon Chevron up icon
6. Creating Professional Dashboards with R and Shiny Chevron down icon Chevron up icon
7. Package Development in RStudio Chevron down icon Chevron up icon
8. Collaborating with Git and GitHub Chevron down icon Chevron up icon
9. R for your Organization – Managing the RStudio Server Chevron down icon Chevron up icon
10. Extending RStudio and Your Knowledge of R Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Most Recent
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5
(6 Ratings)
5 star 50%
4 star 50%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Most Recent

Filter reviews by




N/A Jan 22, 2024
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Feefo Verified review Feefo
Abhijit Dasgupta May 05, 2016
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Actually, the title of the book is misleading...most of the material has to do with R and DevOps and running things, not necessarily in RStudio. But it is a welcome bait-and-switch for the reader, since there is useful starting material inside. The introductions to markdown, Shiny, interactive visualizations and dashboards are nice, as well as information on how to get things running on AWS. However, I'm afraid that the title might steer readers away from this book. RStudio is merely a front end tool into the worlds of R, git, and others. Much of the chapters don't need to even refer to RStudio, since all the action happens in different environments. This book might have been better titled "Reporting, Visualization, and Collaboration using R and Friends".I actually like this book, though I don't love it. Pointers to further reading would make it a more complete experience. Also, there's not much to "Master" in RStudio -- it's really an introduction to other tools that can support the analyst, based in the R ecosystem. It is also already dated, since it doesn't incorporate the newer advances with RStudio Add-ins. It also ignores the option of having templates for rmarkdown documents that can help with a consistent look and feel of reports.
Amazon Verified review Amazon
Amir Aghamousa Mar 27, 2016
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
This book covers nicely essential materials which R users need to enhance their capability to handle real and big projects. The book starts with an overview of RStudio and introduces R Markdown, Shiny and graphical packages like ggplot2 and ggvis. It also includes well explanations about creating interactive documents and dashboards. These are important tools which one needs to perform a project and present the results in a professional way in R. Furthermore the author elaborates step by step some other advanced topics like Package Development, collaborating with using Git and GitHub and using Web Services. To sum up this book describes properly some advanced topics related to RStudio which are necessary in dealing with real projects.
Amazon Verified review Amazon
adnan baloch Mar 16, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
An IDE is, without a doubt, the face of a programming language. A well thought out IDE can be instrumental to the popularity of a programming language, especially one whose usage is primarily confined to certain circles like the scientific community. The perfect IDE makes a programming language more accessible for the average user by highlighting syntax and pointing out errors before compilation. RStudio was created with these things in mind and more. It has become the definitive IDE for anyone looking to benefit from the rich libraries and powerful capabilities of the R language. The authors of this book take great pains to take readers through the features of the IDE, from how to accomplish mundane tasks to unlocking the vast potential of the R language. The wealth of information in this book is truly staggering, for it does not only deal with RStudio. Powerful interactive documents and dashboards are created using Shiny, a web framework for R that will excite beginners and seasoned users of R with its ease of use and professional look of the final result. The authors delve into the integration of RStudio with Git and Github, thus giving readers the recipe to develop solutions in collaboration with a team of developers anywhere in the world. Finally, the authors empower readers with knowledge of managing the RStudio server on online hosting services like AWS and present tips to stay up to date in the world of R. With step by step screenshots on just about every page, this book warrants a position on any serious R user's bookshelf.
Amazon Verified review Amazon
Duncan W. Robinson Mar 02, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Mastering RStudio – Develop, Communicate, and Collaborate with R is probably the best book I’ve seen to date covering RStudio. This is simply my opinion, but I loved the diverse mix of topics covered. For example, I’m itching to try out some of the RShiny examples in Chapters 5 & 6. Also, we’re increasingly using Git / GitHub at work; I’m hoping this book will give me some ideas on this front. I was pleasantly surprised by Mastering RStudio – I got a lot more than simply a book on using RStudio!
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela