Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R, Second Edition

You're reading from   Mastering Machine Learning with R, Second Edition Advanced prediction, algorithms, and learning methods with R 3.x

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787287471
Length 420 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. A Process for Success FREE CHAPTER 2. Linear Regression - The Blocking and Tackling of Machine Learning 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques - K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks and Deep Learning 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis, Recommendation Engines, and Sequential Analysis 11. Creating Ensembles and Multiclass Classification 12. Time Series and Causality 13. Text Mining 14. R on the Cloud 15. R Fundamentals 16. Sources

K-means clustering


With k-means, we will need to specify the exact number of clusters that we want. The algorithm will then iterate until each observation belongs to just one of the k-clusters. The algorithm's goal is to minimize the within-cluster variation as defined by the squared Euclidean distances. So, the kth-cluster variation is the sum of the squared Euclidean distances for all the pairwise observations divided by the number of observations in the cluster.

Due to the iteration process that is involved, one k-means result can differ greatly from another result even if you specify the same number of clusters. Let's see how this algorithm plays out:

  1. Specify the exact number of clusters you desire (k).
  2. Initialize K observations are randomly selected as the initial means.

 

  1. Iterate:
    • K clusters are created by assigning each observation to its closest cluster center (minimizing within-cluster sum of squares)
    • The centroid of each cluster becomes the new mean
    • This is repeated until convergence,...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime