Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Mastering Machine Learning with R
Mastering Machine Learning with R

Mastering Machine Learning with R: Master machine learning techniques with R to deliver insights for complex projects

Arrow left icon
Profile Icon Lesmeister
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (6 Ratings)
Paperback Oct 2015 400 pages 1st Edition
eBook
$43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Lesmeister
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (6 Ratings)
Paperback Oct 2015 400 pages 1st Edition
eBook
$43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Mastering Machine Learning with R

Chapter 2. Linear Regression – The Blocking and Tackling of Machine Learning

 

"Some people try to find things in this game that don't exist, but football is only two things – blocking and tackling."

 
 --Vince Lombardi, Hall of Fame Football Coach

It is important that we get started with a simple, yet extremely effective, technique that has been used for a long time: linear regression. Albert Einstein is believed to have remarked at one time or another that things should be made as simple as possible, but no simpler. This is sage advice and a good rule of thumb in the development of algorithms for machine learning. Considering the other techniques that we will discuss later, there is no simpler model than the tried and tested linear regression, which uses the least squares approach to predict a quantitative outcome. In fact, one could consider it to be the foundation of all the methods that we will discuss later, many of which are mere...

Univariate linear regression

We begin by looking at a simple way to predict a quantitative response, Y, with one predictor variable, x, assuming that Y has a linear relationship with x. The model for this can be written as, Y = B0 + B1x + e. We can state it as the expected value of Y being a function of the parameters B0 (the intercept) plus B1 (the slope) times x, plus an error term. The least squares approach chooses the model parameters that minimize the Residual Sum of Squares (RSS) of the predicted y values versus the actual Y values. For a simple example, let's say we have the actual values of Y1 and Y2 equal to 10 and 20 respectively, along with the predictions of y1 and y2 as 12 and 18. To calculate RSS, we add the squared differences RSS = (Y1 – y1)2 + (Y2 – y2)2, which, with simple substitution, yields (10 – 12)2 + (20 – 18)2 = 8.

I once remarked to a peer during our Lean Six Sigma Black Belt training that it's all about the sum of squares...

Multivariate linear regression

You may be asking yourself the question if in the real world you would ever have just one predictor variable; that is, indeed, fair. Most likely, several, if not many, predictor variables or features, as they are affectionately termed in machine learning, will have to be included in your model. And with that, let's move on to multivariate linear regression and a new business case.

Business understanding

In keeping with the water conservation/prediction theme, let's look at another dataset in the alr3 package, appropriately named water. Lately, the severe drought in Southern California has caused much alarm. Even the Governor, Jerry Brown, has begun to take action with a call to citizens to reduce water usage by 20 percent. For this exercise, let's say we have been commissioned by the state of California to predict water availability. The data provided to us contains 43 years of snow precipitation, measured at six different sites in the Owens Valley...

Other linear model considerations

Before moving on, there are two additional linear model topics that we need to discuss. The first is the inclusion of a qualitative feature, and the second is an interaction term; both are explained in the following sections.

Qualitative feature

A qualitative feature, also referred to as a factor, can take on two or more levels such as Male/Female or Bad/Neutral/Good. If we have a feature with two levels, say gender, then we can create what is known as an indicator or dummy feature, arbitrarily assigning one level as 0 and the other as 1. If we create a model with just the indicator, our linear model would still follow the same formulation as before, that is, Y = B0 + B1x + e. If we code the feature as male is equal to zero and female is equal to one, then the expectation for male would just be the intercept, B0, while for female it would be B0 + B1x. In the situation where you have more than two levels of the feature, you can create n-1 indicators; so, for...

Summary

In the context of machine learning, we train a model and test it to predict or forecast an outcome. In this chapter, we have had an in-depth look at the simple yet extremely effective method of linear regression to predict a quantitative response. The later chapters will cover more advanced techniques, but many of them are mere extensions of what we have learned in this chapter. We've discussed the problem of not visually inspecting the dataset and simply relying on the statistics to guide you in model selection.

With just a few lines of code, you can make powerful and insightful predictions to support decision-making. Not only is it simple and effective, you can also include quantitative variables and interaction terms among the features. Indeed, it is a method that anyone delving into the world of machine learning must master.

Left arrow icon Right arrow icon

Description

Machine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning to your data. The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series. The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages.

What you will learn

  • Gain deep insights to learn the applications of machine learning tools to the industry
  • Manipulate data in R efficiently to prepare it for analysis
  • Master the skill of recognizing techniques for effective visualization of data
  • Understand why and how to create test and training data sets for analysis
  • Familiarize yourself with fundamental learning methods such as linear and logistic regression
  • Comprehend advanced learning methods such as support vector machines
  • Realize why and how to apply unsupervised learning methods

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 28, 2015
Length: 400 pages
Edition : 1st
Language : English
ISBN-13 : 9781783984527
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Oct 28, 2015
Length: 400 pages
Edition : 1st
Language : English
ISBN-13 : 9781783984527
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 148.97
Machine Learning with R
$54.99
Mastering Machine Learning with R
$54.99
Learning Bayesian Models with R
$38.99
Total $ 148.97 Stars icon

Table of Contents

14 Chapters
1. A Process for Success Chevron down icon Chevron up icon
2. Linear Regression – The Blocking and Tackling of Machine Learning Chevron down icon Chevron up icon
3. Logistic Regression and Discriminant Analysis Chevron down icon Chevron up icon
4. Advanced Feature Selection in Linear Models Chevron down icon Chevron up icon
5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines Chevron down icon Chevron up icon
6. Classification and Regression Trees Chevron down icon Chevron up icon
7. Neural Networks Chevron down icon Chevron up icon
8. Cluster Analysis Chevron down icon Chevron up icon
9. Principal Components Analysis Chevron down icon Chevron up icon
10. Market Basket Analysis and Recommendation Engines Chevron down icon Chevron up icon
11. Time Series and Causality Chevron down icon Chevron up icon
12. Text Mining Chevron down icon Chevron up icon
A. R Fundamentals Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(6 Ratings)
5 star 66.7%
4 star 16.7%
3 star 0%
2 star 16.7%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Fabien Deneuville Aug 04, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
J'ai apprécié ce livre. Il est globalement très bien, fait, donne de multiples exemples. Il s'adresse à qui connaît déjà bien R et a de solides bases en analytics. Il permettra d'aller plus loin sur le machine learning, les différents types d'algorithmes, les techniques existantes... J'ai appris des choses avec ce livre.
Amazon Verified review Amazon
HDFS_Python Jun 11, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Overall, I think the book was good and I enjoyed reading it, for a statistics book this is a praise. The following pros will seem lacking to the cons but believe me that it is because the book was overall good and any compliment hits nearly all chapters in the book. When I did see a con, I expanded on it to give full insight into the issue. As in any endeavor of this sort, it is always a challenge to find the right balance between theory and application.Pros:The book contains companion code. This means a student can save the code for the future, load it in when necessary, and alter the code to learn from it. In my honest opinion, this is the best option for me to study and learn a topic. Each chapter covers a different over-arching problem, which is gradually solved when new-techniques and strategies are introduced then implemented to solidify the knowledge with use. Allowing the reader to see what scenarios the technique surrounds and how it is run. The book covers a wide variety of topics, allowing a student to become a jack-of-all-trades, in the use of machine learning and advanced statistical techniques in R.Cons:I believe this book is suited well for someone with a mathematical and programming background. Without either, the book would seem challenging and daunting in some areas (i.e. Neural Networks). The book would not be impossible for someone without knowledge in R to read it, but it would be advised that the person knows passing knowledge of the software before they begin this book.Lack of mathematical theory. In a few areas, the book shows how to use the topic to reach the end but does not include the deep mathematical background into how the calculation are run. It has a chance of creating a black-box scenario where someone knows how it works on the outside without a clue of how it is run on the inside. In my opinion, this isn’t always necessary knowing how to calculate acf, pacf, and eacf by hand is nice but doesn’t help when running acf(model). Side note: no reasonable person would calculate acf past five lag or pacf by hand.Overview for all subjects. The way the book was made for ease in learning makes brings up a small problem. Some challenging data sets may exceed the scope of the books training material and could lead to the reader being ill prepared. An example of this problem would be if a time series problem contains innovative or additive outlier. This means the student may receive a model with the lowest AIC value, but the formula may not be the most optimized format. For this case, a student should know when a problem is showing intriguing characteristics and should being a research process into how to confront these problems, through other reading material, internet, or professional network.
Amazon Verified review Amazon
meitzmann Oct 20, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Mastering Machine Learning in R provides a great introduction to machine learning and data analysis techniques. It is refreshing to read a statistics/data focused book that is written in an accessible manner by someone with good communication skills.The concepts are laid out in a logical format that includes Data Preparation and Business Cases, two things that are often left out of many similar texts. The author goes into detail on concepts that need it and avoids it on concepts that don’t while still providing enough resources for the reader.The code that comes with the book makes it a great resource for students or someone who is looking to teach themselves. Overall I highly recommend this text.
Amazon Verified review Amazon
Mugdha Hota Oct 18, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Ok
Amazon Verified review Amazon
Nick P Jan 31, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Great introductory book on the subject and no need for me to fumble through other books.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.