Summary
To summarize, in this chapter, we covered the procedures around the enabling of Elastic ML's features in both a self-managed on-premises Elastic Stack and within the Elasticsearch Service of Elastic Cloud. Additionally, we looked under the hood to see the deep integration points with the rest of the Elastic Stack and how Elastic ML works from an operational perspective.
As we look ahead to future chapters, the focus will now shift away from the conceptual and background information into the realm of practical usage. Starting with the next chapter, we will jump right into the comprehensive capabilities of Elastic ML's anomaly detection and we will learn how to configure jobs to solve some practical use cases in log analytics, metric analysis, and user behavior analytics.