The key features of PyTorch
In the previous chapter, we saw that PyTorch provides us with a scalable, multiplatform programming interface for implementing and running machine learning algorithms. After its initial release in 2016 and its 1.0 release in 2018, PyTorch has evolved into one of the two most popular frameworks for deep learning. It uses dynamic computational graphs, which have the advantage of being more flexible compared to its static counterparts. Dynamic computational graphs are debugging friendly: PyTorch allows for interleaving the graph declaration and graph evaluation steps. You can execute the code line by line while having full access to all variables. This is a very important feature that makes the development and training of NNs very convenient.
While PyTorch is an open-source library and can be used for free by everyone, its development is funded and supported by Facebook. This involves a large team of software engineers who expand and improve the library...