Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Engineering on AWS

You're reading from   Machine Learning Engineering on AWS Build, scale, and secure machine learning systems and MLOps pipelines in production

Arrow left icon
Product type Paperback
Published in Oct 2022
Publisher Packt
ISBN-13 9781803247595
Length 530 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Joshua Arvin Lat Joshua Arvin Lat
Author Profile Icon Joshua Arvin Lat
Joshua Arvin Lat
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1: Getting Started with Machine Learning Engineering on AWS
2. Chapter 1: Introduction to ML Engineering on AWS FREE CHAPTER 3. Chapter 2: Deep Learning AMIs 4. Chapter 3: Deep Learning Containers 5. Part 2:Solving Data Engineering and Analysis Requirements
6. Chapter 4: Serverless Data Management on AWS 7. Chapter 5: Pragmatic Data Processing and Analysis 8. Part 3: Diving Deeper with Relevant Model Training and Deployment Solutions
9. Chapter 6: SageMaker Training and Debugging Solutions 10. Chapter 7: SageMaker Deployment Solutions 11. Part 4:Securing, Monitoring, and Managing Machine Learning Systems and Environments
12. Chapter 8: Model Monitoring and Management Solutions 13. Chapter 9: Security, Governance, and Compliance Strategies 14. Part 5:Designing and Building End-to-end MLOps Pipelines
15. Chapter 10: Machine Learning Pipelines with Kubeflow on Amazon EKS 16. Chapter 11: Machine Learning Pipelines with SageMaker Pipelines 17. Index 18. Other Books You May Enjoy

What is expected from ML engineers?

ML engineering involves using ML and software engineering concepts and techniques to design, build, and manage production-level ML systems, along with pipelines. In a team working to build ML-powered applications, ML engineers are generally expected to build and operate the ML infrastructure that’s used to train and deploy models. In some cases, data scientists may also need to work on infrastructure-related requirements, especially if there is no clear delineation between the roles and responsibilities of ML engineers and data scientists in an organization.

There are several things an ML engineer should consider when designing and building ML systems and platforms. These would include the quality of the deployed ML model, along with the security, scalability, evolvability, stability, and overall cost of the ML infrastructure used. In this book, we will discuss the different strategies and best practices to achieve the different objectives of an ML engineer.

ML engineers should also be capable of designing and building automated ML workflows using a variety of solutions. Deployed models degrade over time and model retraining becomes essential in ensuring the quality of deployed ML models. Having automated ML pipelines in place helps enable automated model retraining and deployment.

Important note

If you are excited to learn more about how to build custom ML pipelines on AWS, then you should check out the last section of this book: Designing and building end-to-end MLOps pipelines. You should find several chapters dedicated to deploying complex ML pipelines on AWS!

You have been reading a chapter from
Machine Learning Engineering on AWS
Published in: Oct 2022
Publisher: Packt
ISBN-13: 9781803247595
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image