Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming

You're reading from   Linux Kernel Programming A comprehensive guide to kernel internals, writing kernel modules, and kernel synchronization

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781789953435
Length 754 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: The Basics
2. Kernel Workspace Setup FREE CHAPTER 3. Building the 5.x Linux Kernel from Source - Part 1 4. Building the 5.x Linux Kernel from Source - Part 2 5. Writing Your First Kernel Module - LKMs Part 1 6. Writing Your First Kernel Module - LKMs Part 2 7. Section 2: Understanding and Working with the Kernel
8. Kernel Internals Essentials - Processes and Threads 9. Memory Management Internals - Essentials 10. Kernel Memory Allocation for Module Authors - Part 1 11. Kernel Memory Allocation for Module Authors - Part 2 12. The CPU Scheduler - Part 1 13. The CPU Scheduler - Part 2 14. Section 3: Delving Deeper
15. Kernel Synchronization - Part 1 16. Kernel Synchronization - Part 2 17. About Packt 18. Other Books You May Enjoy

The process VAS – the full view

Once again, refer to Figure 7.1; it shows the actual process VAS layout for a single 32-bit process. The reality, of course – and this is key – is that all processes alive on the system have their own unique user-mode VAS but share the same kernel segment. For some contrast from Figure 7.1, which showed a 2:2 (GB) VM split, the following figure shows the actual situation for a typical IA-32 system, with a 3:1 (GB) VM split:

Figure 7.5 – Processes have a unique user VAS but share the kernel segment (32-bit OS); IA-32 with a 3:1 VM split

Notice in the preceding figure how the address space reflects a 3:1 (GB) VM split. The user address space extends from 0 to 0xbfff ffff (0xc000 0000 is the 3 GB mark; this is what the PAGE_OFFSET macro is set to), and the kernel VAS extends from 0xc000 0000 (3 GB) to 0xffff ffff (4 GB).

Later in this chapter, we will cover the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime