Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Probabilistic Graphical Models in R

You're reading from   Learning Probabilistic Graphical Models in R Familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R

Arrow left icon
Product type Paperback
Published in Apr 2016
Publisher Packt
ISBN-13 9781784392055
Length 250 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Bayesian linear models


In this section, we are going to extend the standard linear regression model using the Bayesian paradigm. One of the goals is to put prior knowledge on the parameters of the models to help to solve the over-fitting problem.

Over-fitting a model

One immense benefit of going Bayesian when doing a linear model is to have better control of the parameters. Let's do an initial experiment to see what happens when the parameters are completely out of control.

We are going to generate a simple model in R and look at the parameters when they are fitted with the standard approach for linear models.

Let's first generate some data points at random to obtain 10 variables and plot them:

N <- 30
x <- runif(N, -2, 2)
X <- cbind(rep(1, N), x, x^2, x^3, x^4, x^5, x^6, x^7, x^8)
matplot(X, t='l')

Next we generate the dependent variable following the model:

y = Xβ + ϵ

Here, ϵ is a Gaussian noise of variance σ2. We use the following code in R and plot the variable y. As we use randomly...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image