Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Predictive Analytics with Python

You're reading from   Learning Predictive Analytics with Python Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python

Arrow left icon
Product type Paperback
Published in Feb 2016
Publisher
ISBN-13 9781783983261
Length 354 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ashish Kumar Ashish Kumar
Author Profile Icon Ashish Kumar
Ashish Kumar
Gary Dougan Gary Dougan
Author Profile Icon Gary Dougan
Gary Dougan
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Predictive Modelling FREE CHAPTER 2. Data Cleaning 3. Data Wrangling 4. Statistical Concepts for Predictive Modelling 5. Linear Regression with Python 6. Logistic Regression with Python 7. Clustering with Python 8. Trees and Random Forests with Python 9. Best Practices for Predictive Modelling A. A List of Links
Index

Best practices for algorithms

The choice of which algorithm to deploy to answer a business question depends on a variety of parameters, and there is no one good answer. The choice of algorithm generally depends on the nature of the predictor and output variables; also, the overarching nature of the business problem at hand—whether it is a numerical prediction, classification, or an aggregation problem. Based on these preliminary criteria, one can shortlist a few existing methods to apply on the dataset.

Each method will have its own pros and cons, and the final decision should be taken keeping in mind the business context. The decision for the best-suited algorithm is usually taken based on the following two requirements:

  • Sometimes, the user of the result is interested only in the accuracy of the results. In such cases, the choice of the algorithm is done based on the accuracy of the algorithms. All the qualifying models are run and the one with the maximum accuracy is finalized.
  • At...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image