Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning OpenCV 5 Computer Vision with Python

You're reading from   Learning OpenCV 5 Computer Vision with Python Tackle computer vision and machine learning with the newest tools, techniques and algorithms

Arrow left icon
Product type Paperback
Published in Jul 2025
Publisher Packt
ISBN-13 9781803230221
Length
Edition 4th Edition
Arrow right icon
Authors (2):
Arrow left icon
Joe Minichino Joe Minichino
Author Profile Icon Joe Minichino
Joe Minichino
Joseph Howse Joseph Howse
Author Profile Icon Joseph Howse
Joseph Howse
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

1. Learning OpenCV 5 Computer Vision with Python, Fourth Edition: Tackle tools, techniques, and algorithms for computer vision and machine learning FREE CHAPTER
2. Setting Up OpenCV 3. Handling Files, Cameras, and GUIs 4. Processing Images with OpenCV 5. Detecting and Recognizing Faces 6. Retrieving Images and Searching Using Image Descriptors 7. Building Custom Object Detectors 8. Tracking Objects 9. Camera Models and Augmented Reality 10. Introduction to Neural Networks with OpenCV 11. OpenCV Applications at Scale Appendix A: Bending Color Space with the Curves Filter

Improving the 3D tracking algorithm

Essentially, our 3D tracking algorithm combines three approaches:

  1. Find a 6DOF pose with a PnP solver, whose inputs depend on FLANN-based matches of ORB descriptors..
  2. Use a Kalman filter to stabilize the 6DOF tracking result.
  3. If an object was tracked in the previous frame, use a mask to limit the search to the region where the object is now most likely to be found.

Often, commercial solutions for 3D tracking involve additional approaches. We have relied on successfully using a descriptor matcher and a PnP solver for every frame; however, a more complex algorithm may provide some alternatives as fallbacks or as cross-checking mechanisms. This is in case the descriptor matcher and PnP solver miss the object in some frames, or in case they are too computationally expensive to use for every frame. The following alternatives are widely used:

  • Update the previous keypoint matches based on optical flow, and update the previous 6DOF pose based on the homography...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime