Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Bayesian Models with R

You're reading from   Learning Bayesian Models with R Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher Packt
ISBN-13 9781783987603
Length 168 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Hari Manassery Koduvely Hari Manassery Koduvely
Author Profile Icon Hari Manassery Koduvely
Hari Manassery Koduvely
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introducing the Probability Theory FREE CHAPTER 2. The R Environment 3. Introducing Bayesian Inference 4. Machine Learning Using Bayesian Inference 5. Bayesian Regression Models 6. Bayesian Classification Models 7. Bayesian Models for Unsupervised Learning 8. Bayesian Neural Networks 9. Bayesian Modeling at Big Data Scale Index

Conditional probability

Often, one would be interested in finding the probability of the occurrence of a set of random variables when other random variables in the problem are held fixed. As an example of population health study, one would be interested in finding what is the probability of a person, in the age range 40-50, developing heart disease with high blood pressure and diabetes. Questions such as these can be modeled using conditional probability, which is defined as the probability of an event, given that another event has happened. More formally, if we take the variables A and B, this definition can be rewritten as follows:

Conditional probability

Similarly:

Conditional probability

The following Venn diagram explains the concept more clearly:

Conditional probability

In Bayesian inference, we are interested in conditional probabilities corresponding to multivariate distributions. If Conditional probability denotes the entire random variable set, then the conditional probability of Conditional probability, given that Conditional probability is fixed at some value, is given by the ratio of joint probability of Conditional probability and joint probability of Conditional probability:

Conditional probability

In the case of two-dimensional normal distribution, the conditional probability of interest is as follows:

Conditional probability

It can be shown that (exercise 2 in the Exercises section of this chapter) the RHS can be simplified, resulting in an expression for Conditional probability in the form of a normal distribution again with the mean Conditional probability and variance Conditional probability.

You have been reading a chapter from
Learning Bayesian Models with R
Published in: Oct 2015
Publisher: Packt
ISBN-13: 9781783987603
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image