XGBoost
We have just discussed that there are no options for parallel processing when using GBM from Scikit-learn, and this is exactly where XGBoost comes in. Expanding on GBM, XGBoost introduces more scalable methods leveraging multithreading on a single machine and parallel processing on clusters of multiple servers (using sharding). The most important improvement of XGBoost over GBM lies in the capability of the latter to manage sparse data. XGBoost automatically accepts sparse data as input without storing zero values in memory. A second benefit of XGBoost lies in the way in which the best node split values are calculated while branching the tree, a method named quantile sketch. This method transforms the data by a weighting algorithm so that candidate splits are sorted based on a certain accuracy level. For more information read the article at http://arxiv.org/pdf/1603.02754v3.pdf.
XGBoost stands for Extreme Gradient Boosting, an open source gradient boosting algorithm that has gained...