Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Keras Reinforcement Learning Projects

You're reading from   Keras Reinforcement Learning Projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789342093
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Overview of Keras Reinforcement Learning FREE CHAPTER 2. Simulating Random Walks 3. Optimal Portfolio Selection 4. Forecasting Stock Market Prices 5. Delivery Vehicle Routing Application 6. Continuous Balancing of a Rotating Mechanical System 7. Dynamic Modeling of a Segway as an Inverted Pendulum System 8. Robot Control System Using Deep Reinforcement Learning 9. Handwritten Digit Recognizer 10. Playing the Board Game Go 11. What's Next? 12. Other Books You May Enjoy

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Reinforcement Learning with Python

Sudharsan Ravichandiran

ISBN: 978-1-78883-652-4

  • Understand the basics of reinforcement learning methods, algorithms, and elements
  • Train an agent to walk using OpenAI Gym and Tensorflow
  • Understand the Markov Decision Process, Bellman’s optimality, and TD learning
  • Solve multi-armed-bandit problems using various algorithms
  • Master deep learning algorithms, such as RNN, LSTM, and CNN with applications
  • Build intelligent agents using the DRQN algorithm to play the Doom game
  • Teach agents to play the Lunar Lander game using DDPG
  • Train an agent to win a car racing game using dueling DQN

Hands-On Transfer Learning with Python
Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh

ISBN: 978-1-78883-130-7

  • Set up your own DL environment with...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image